1.设f(x)=x^2+1,g(x)=f[f(x)],F(x)=g(x)-af(x),问是否存在实数a,使F(x)在区间
1.设f(x)=x^2+1,g(x)=f[f(x)],F(x)=g(x)-af(x),问是否存在实数a,使F(x)在区间
设函数g(x)=ax2-x平方分之1+f(x)刚是否存在实数使为奇函数?说理由 解不等式f(x)-x>2
已知函数f(x)=(2+x)/(2-x),设g(x)=根号下[(2-x)*f(x)]-m(x+2)-2,是否存在实数m,
设函数f(x)=log2(-x),g(x)=x+1,F(x)={g(x),f(x)大于等于g(x);f(x),f(x)小
已知f(x)=a(x-1)/x²,其中a>0.设g(x)=xlnx-x²f(x),求g(x)在区间[
已知函数f(x)=lnx,g(x)=a/x(a>0),设F(x)=f(x)+g(x) 求F(x)的单调区间
设a是实数,f(x)=a-(2/2x+1) 是否存在a,使f(x)为奇函数?
已知函数f(x)=1/2ax^2+2x,g(x)=lnx.问是否存在实数a>0,使得方程Q(x)=g(x)╱x-f'(x
已知a为实数,函数f(x)=a/x+Lnx-1,g(x)=(Lnx-1)e^x+x.问:是否存在实数x0属于(0,e],
.设函数f(x),g(x)在区间[-a,a]上连续,g(x)为偶函数,且f(-x)+f(x)=2.证明:
设F(x)=g(x)f(x),f(X)在X=a处连续但是不可导,g(X)导数存在,则g(a)=0是F(X)在X=a处可导
设f(x),g(x),h(x)都是多项式,若 (f(x),g(x))=1,证明(f(x)+g(x)h(x),g(x))=