△ABC中,角C=90° 角A=60° AC=2CM 长为1CM的线段MN在△ABC的便AB上沿AB方向以1CM/S的速
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 10:25:42
△ABC中,角C=90° 角A=60° AC=2CM 长为1CM的线段MN在△ABC的便AB上沿AB方向以1CM/S的速度向点B运动(
动前点M与点A重合) 过M N分别作AB的垂线交直角边于P Q 两点 线段MN运动的时间为ts
1.若△AMP得面积为y写出y与t的函数关系式(写出自变量t的取值范围)
2.线段MN运动过程中,四边形MNQP有可能成为矩形吗 若可能,请求出此时t值,不可能则说明理由
3.t为何值时,以C P Q为顶点的△与△ABC相似
动前点M与点A重合) 过M N分别作AB的垂线交直角边于P Q 两点 线段MN运动的时间为ts
1.若△AMP得面积为y写出y与t的函数关系式(写出自变量t的取值范围)
2.线段MN运动过程中,四边形MNQP有可能成为矩形吗 若可能,请求出此时t值,不可能则说明理由
3.t为何值时,以C P Q为顶点的△与△ABC相似
①
∵ △ABC中 ∠ACB=90°,∠CAB=60°
∴ AB=2AC=4(cm) 勾股定理
∵ PM⊥AB
∴ y=1/2 AM x PM
=1/2 x 1t x (根号下3)t = (根号下3)t² / 2
∵ 当t=0时,M与A重合,
NB=AB-AN=AB-MN=4-1=3(cm)
此时△AMP不存在(因为AM=0)
∴ t>0
又 作CD⊥AB于D,
AD=1/2 AC=1(cm) 勾股定理
当AM>AD时,△APM不存在
∴ 1 x t ≤1
∴ t ≤ 1
∴ 0 < t ≤ 1
②
假设MNQP为矩形,则PQ‖AB‖MN,PQ=MN=1
∴∠CPQ=∠CAB=60° 两直线平行,同位角相等
∴CP=1/2 PQ = 1/2 勾股定理
∴AP=AC-PC=3/2
∵MNQP为矩形
∴PM⊥AB,∠PMA=90°
又∵ ∠A=60°
∴AM=1/2 AP= 3/4(cm)
∵AM=1 x t
∴此时 t=3/4(s)
∵t=3/4,0 < t ≤ 1
∴存在MNQP为矩形的情况
③
假设△CAB与△CPQ相似,
∵∠c为△CAB与△CPQ公共角
∴∠CAB=∠CPQ
∴PQ‖AB
∵PM⊥AB,QN⊥AB
∴MNQP为矩形
同②,t=3/4
∵ △ABC中 ∠ACB=90°,∠CAB=60°
∴ AB=2AC=4(cm) 勾股定理
∵ PM⊥AB
∴ y=1/2 AM x PM
=1/2 x 1t x (根号下3)t = (根号下3)t² / 2
∵ 当t=0时,M与A重合,
NB=AB-AN=AB-MN=4-1=3(cm)
此时△AMP不存在(因为AM=0)
∴ t>0
又 作CD⊥AB于D,
AD=1/2 AC=1(cm) 勾股定理
当AM>AD时,△APM不存在
∴ 1 x t ≤1
∴ t ≤ 1
∴ 0 < t ≤ 1
②
假设MNQP为矩形,则PQ‖AB‖MN,PQ=MN=1
∴∠CPQ=∠CAB=60° 两直线平行,同位角相等
∴CP=1/2 PQ = 1/2 勾股定理
∴AP=AC-PC=3/2
∵MNQP为矩形
∴PM⊥AB,∠PMA=90°
又∵ ∠A=60°
∴AM=1/2 AP= 3/4(cm)
∵AM=1 x t
∴此时 t=3/4(s)
∵t=3/4,0 < t ≤ 1
∴存在MNQP为矩形的情况
③
假设△CAB与△CPQ相似,
∵∠c为△CAB与△CPQ公共角
∴∠CAB=∠CPQ
∴PQ‖AB
∵PM⊥AB,QN⊥AB
∴MNQP为矩形
同②,t=3/4
△ABC中,角C=90° 角A=60° AC=2CM 长为1CM的线段MN在△ABC的便AB上沿AB方向以1CM/S的速
△ABC中,∠C=90°,∠A=60°,AC=2cm,长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速
△ABC中∠C =90°∠A =60° AC=2cm长为1cm的上沿AB方向以1cm/s的速度向点B运动运
如图,在三角形ABC中,角C=90°,BC=2cm,AB=4cm,长度为1cm的线段MN……
1.RT△ABC中,角C=90°,AC=12cm,AB=13cm,在顶点A处有一只蝴蝶,以4cm/s的速度沿AC方向爬行
如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,
如图,在Rt△ABC中,∠A=90°,AB=4cm,AC=3cm.点M从点A出发沿AC方向以1cm/s的速
如图,在Rt△ABC中,∠C=90°,AB=25cm,AC=20cm,点P从点A出发,沿AB的方向匀速运动,速度为5cm
如图,已知等边三角形ABC的边长为4厘米,长为1厘米的线段MN在在△ABC的边AB上沿AB方向以1cm/s的速度像B点
在△ABC中,∠C=90°,AC=6cm,AB=10cm,点P是BC的中点,点Q沿AB边以1cm/s的速度自A向B移动,
在Rt△ABC中,AB=6cm,BC=8cm,角B=90度,MN为AB,AC中点,动点P从B出发,以1cm每秒的速度沿B
如图,△ABC,∠C=90°,AC=8CM,BC=6cm,AB=10CM.动点P在AC上以2cm/s的速度从C向A运动;