函数f(x)=ax^2+b|x |+c(a≠0),其定义域R分成了四个单调区间,则实数a,b,c满足
函数f(x)=ax^2+b|x |+c(a≠0),其定义域R分成了四个单调区间,则实数a,b,c满足
函数f(x)=ax2+b|x|+c(a≠0),其定义域R分成了四个单调区间,则实数a,b,c满足( )
函数f(x)=ax²+b|x|+c (a不等于0)在其定义域R内有四个单调区间,则实数a,b,c满足?
已知函数f(x)=ax的三次方+bx的平方+cx+a的平方 (a,b,c属于R)的单调递减区间(1,2),且满足f(0)
已知二次函数f(x)=ax^2+bx+c(a,b,c∈R)满足:对于任意实数x,都有f(x)>=x, f(x)
已知函数f(x)的定义域是R,且f(-x)=1/f(x)>0,若g(x)=f(x)+c(c为常数)在区间[a,b]上单调
已知函数f(x)=ax^3 +bx^2 +cx +a^2 (a.b.c均属于R)的单调递减区间是(1,2),
已知实数a,b,c属于R,函数f(x)=ax^3+bx^2+cx满足f(1)=0,设f(x)的导函数为f’(x),满足f
设二次函数f(x)=ax^2+bx+c(a,b,c∈R)满足f(-1)=0,且对任意实数x,均有x-1≤f(x)≤x^2
已知二次函数f(x)=ax^2+bx+c(a,b,c∈R)满足:f(-2)=0,对任意实数x,都有f(x)≥x,且当x∈
已知函数f(x)=ax²+bx+c满足f(1)=0,b=2c,求函数f(x)的单调增区间
若函数f(x)=x2+(2a+1)|x|+1的定义域被分成了四个不同的单调区间,则实数a的取值范围是( )