设f(x)在区间[0.1]上连续,函数F(x)是上限为x下限为0,tf(cost)的定积分,判断F(x)在[-π/2,π
设f(x)在区间[0.1]上连续,函数F(x)是上限为x下限为0,tf(cost)的定积分,判断F(x)在[-π/2,π
积分证明题f(x)在R上连续,证明:若f(x)为奇函数,则积分上限是x积分下限是0的f(x)的定积分是偶函数.
f(x)在区间[0,1]上连续,则函数F(x)=∫(0,x) tf(cost)dt在[-π/2,π/2]是 A.奇函数B
如果函数f(x)在区间[a,b]上连续且定积分{上限a,下限b}f(x)dx=0,证明在[a,b]上至少
设函数f(x)在区间[0,1]上连续,证明∫f(1-2x)dx上限为1/2下限为0=1/2∫f(x)dx上限
设f(x)为连续函数,则定积分上限是1,下限是0,f(x/2)的导数,的定积分等于()
设f(x)为连续函数,且满足tf(t)在区间(1,x)上对t的积分等于xf(x)+x^2,求f(x).
设f(x)在0到正无穷上连续,若积分上限f(x),下限0,t^2dt=x^2(x+1),求f(2)
设函数f(x)在区间[-1,1]上连续,则x=0是函数g(x)=∫f(t)dt/x (上限x,下限0)的()
【高数】定积分 设f(x)连续,f(0)=1,则曲线y=∫(上限x,下限0) f(x)dx 在(0
求定积分的导数f(x)+2倍的定积分[上限为x,下限为0]f(t)dt=x的平方,求f(x)
高数题,设函数f(x)在区间(0,1)上连续,则定积分【从-1到1】{[f(x)+f(-x)+x]x}dx=