作业帮 > 数学 > 作业

设f(x)在区间[0.1]上连续,函数F(x)是上限为x下限为0,tf(cost)的定积分,判断F(x)在[-π/2,π

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 02:48:29
设f(x)在区间[0.1]上连续,函数F(x)是上限为x下限为0,tf(cost)的定积分,判断F(x)在[-π/2,π/2]的奇偶性
设f(x)在区间[0.1]上连续,函数F(x)是上限为x下限为0,tf(cost)的定积分,判断F(x)在[-π/2,π
F(x) = ∫(0->x) tf(cost) dt
F(-x) =∫(0->-x) tf(cost) dt
let
y= -t
dy = -dt
t=0,y=0
t=-x,y=x
F(-x)
=∫(0->-x) tf(cost) dt
=∫(0->x) (-y)f(cos(-y)) (-dy)
=∫(0->x) yf(cosy) dy
=F(x)
F(x)偶函数