在锐角三角形ABC中已知内角A、B、C所对的边分别为a、b、c.向量m=(2sinB,√3),n=(cos2B,cosB
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 16:37:37
在锐角三角形ABC中已知内角A、B、C所对的边分别为a、b、c.向量m=(2sinB,√3),n=(cos2B,cosB),且向量m,n共线.(1) 求角B的大小(2)如果b=1,求三角形ABC的面积S的最大值
⑴根据:m=(2sinB,√3),n=(cos2B,cosB),且向量m,n共线(意味着平行且重合)
那么:2sinB:√3 =cos2B:cosB ==>tan2B=√3
2B=60°
∠B=30 °
⑵ 如果b=1,求三角形ABC的面积S的最大值:
▲ABC面积最大值可以这样考虑:
方法1:我们把▲ABC放置在半径一定的圆内部,由于b=1固定(相当于弦长固定,即A、C点固定),该边的对角∠B固定(相当于边所对应的张角固定),现在设想A点沿着圆的圆周弧线移动(此时的张角∠B不会发生变化的),那么只有当AB=AC,即▲ABC为等腰三角形的时候,其面积达到最大值;
方法2:直接代数方法,由于S▲ABC=1/2 ac sinB
对于固定值的∠B,只有当a=c时,ac乘积才最大,(因为你熟悉的(a+c)/2≥(ac)的根号)
总之等腰三角形AC=AB,S▲ABC最大;
具体地,
∠B=30°,∠A=∠C=75° a=c=2sin(75°) ,
S▲ABC最大=1/2 ac sinB
=1/2 *2sin(75°)*2sin(75°)*sin(30°) → sin(75°)=(√6+√2)/4
=(2+√3) / 4
=≈0.9330
那么:2sinB:√3 =cos2B:cosB ==>tan2B=√3
2B=60°
∠B=30 °
⑵ 如果b=1,求三角形ABC的面积S的最大值:
▲ABC面积最大值可以这样考虑:
方法1:我们把▲ABC放置在半径一定的圆内部,由于b=1固定(相当于弦长固定,即A、C点固定),该边的对角∠B固定(相当于边所对应的张角固定),现在设想A点沿着圆的圆周弧线移动(此时的张角∠B不会发生变化的),那么只有当AB=AC,即▲ABC为等腰三角形的时候,其面积达到最大值;
方法2:直接代数方法,由于S▲ABC=1/2 ac sinB
对于固定值的∠B,只有当a=c时,ac乘积才最大,(因为你熟悉的(a+c)/2≥(ac)的根号)
总之等腰三角形AC=AB,S▲ABC最大;
具体地,
∠B=30°,∠A=∠C=75° a=c=2sin(75°) ,
S▲ABC最大=1/2 ac sinB
=1/2 *2sin(75°)*2sin(75°)*sin(30°) → sin(75°)=(√6+√2)/4
=(2+√3) / 4
=≈0.9330
在锐角三角形ABC中已知内角A、B、C所对的边分别为a、b、c.向量m=(2sinB,√3),n=(cos2B,cosB
已知锐角三角形ABC中的内角A,B,A的对边分别为a,b,c,定义向量m=(sinB,-根号3),n=(cos2B,4c
锐角三角形ABC中,A,B,C所对边分别为a,b,c,向量m=(sinB,根号3),向量n=(cos2B,4cos^2B
在锐角ABC三角形中,已知内角A、B、C所对的边分别为a、b、c向量m=(2sin,根号3),n=(cos2B,cosB
已知锐角三角形ABC中,内角ABC的对边长分别为a,b,c,向量m=(sinB,根号3 ac),n=(b^2-a^2-c
已知三角形ABC的内角A、B、C所对的边分别为a、b、c.向量m=(2sinB,-√3)...
在三角形ABC中,已知角A、B、C所对的边分别为a、b、c,向量m=(2sinB,负的根号3),n=(cos2B,2co
在△ABC中,内角a,b,c的对边分别是a,b,c已知向量m=(sinA,cosA),n=(sinB,-cosB)且m
已知在三角形ABC中,a,b,c分别为角A,B所对,C的边,向量m=(cosA,sinA),n=(cosB,sinB),
已知在三角形ABC中,a,b,c分别为角A,B,C所对的边,向量m=(cosA,sinA),n=(cosB,sinB),
帮下忙,在abc中,内角a、b、c所对的边分别为a、b、c,平面向量m=(2a+c,b)与平面向量n=(cosB,cos
在锐角三角形ABC中,已知内角A,B,C所对的边分别为a,b,c,向量m=(2sin(A+C),根号3),n=(cos2