已知f(t)是t的函数,求证:对任意实数t,直线l:f(t)x+y+t=0过定点的充要条件是:f(t)为一次函数
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 03:59:42
已知f(t)是t的函数,求证:对任意实数t,直线l:f(t)x+y+t=0过定点的充要条件是:f(t)为一次函数
充分性:f(t)为一次函数
则可以设f(t)=kt+b(k,b已确定)
则对于直线f(t)x+y+t=0有:
(kt+b)x+y+t=0
ktx+bx+y+t=0
t(kx+1)+(bx+y)=0
对于任意t 直线恒过(-1/k,b/k)点
所以充分性得证
必要性:对于任意t,l:f(t)x+y+t=0过定点
反证法:若f(t)不是一次函数,则t^k项前系数均为0
则x=0 y=-t 又(0,-t)随t改变而改变 所以假设不成立
f(t)为一次函数
所以必要性得证
所以对任意实数t,直线l:f(t)x+y+t=0过定点的充要条件是:f(t)为一次函数
则可以设f(t)=kt+b(k,b已确定)
则对于直线f(t)x+y+t=0有:
(kt+b)x+y+t=0
ktx+bx+y+t=0
t(kx+1)+(bx+y)=0
对于任意t 直线恒过(-1/k,b/k)点
所以充分性得证
必要性:对于任意t,l:f(t)x+y+t=0过定点
反证法:若f(t)不是一次函数,则t^k项前系数均为0
则x=0 y=-t 又(0,-t)随t改变而改变 所以假设不成立
f(t)为一次函数
所以必要性得证
所以对任意实数t,直线l:f(t)x+y+t=0过定点的充要条件是:f(t)为一次函数
已知f(t)是t的函数,求证:对任意实数t,直线l:f(t)x+y+t=0过定点的充要条件是:f(t)为一次函数
已知函数y=x2+bx+c对任意实数t,都有f(3+t)=f(3-t),则f(0),f(3),f(4)的大小关系是?
已知函数f(X)是一次函数,且对任意的t∈R,总有3f(t+1)-2f(t-1)=2t+17,求f(X)的表达式
已知t为实数,设x的二次函数y=x^2-2tx t-1的最小值为f(t),求f(t)在t大于等于0且小于等于2上的最大小
已知函数f(x)=1/3x^3+2x,对任意的实数t∈[-3,3],f(t-2)+f(x)<0恒成立则x的取值范围是?
已知定义域为R的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定
分不清思路.已知f(x)是定义在R上的函数且在[0,+∞)上递增,对任意t都有f(-t)=f(t)成立,则Af(-2)
已知f(x)=x^2-2x-3(t≤x≤t+2),t是已知实数,试用t表示函数f(x)的最大值.
已知函数f(x)=1−22x+t(t是常实数).
对于函数y=f(x),定义:若存在非零常数M、T,使函数f(x)对定义域内的任意实数x,都满足f(x+T)-f(x)=M
1、已知定义域为R的函数f(x)在区间(负无穷,5)上单调递减,对于任意实数t,都有f(5+t)=f(5-t)则f(-1
已知定义域为R的函数f(x)=a+1/(4^x+1)是奇函数.若对任意的t属于R,不等式f(t^2-2t)+f(2t^2