作业帮 > 数学 > 作业

高数.f(x)=1/(1+x²) +∫[0,1]f(x)dx *√(1-x²) 求

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 20:51:46
高数.f(x)=1/(1+x²) +∫[0,1]f(x)dx *√(1-x²) 求
高数.f(x)=1/(1+x²) +∫[0,1]f(x)dx *√(1-x²) 求 ∫[0,1]f(x)dx .
高数.f(x)=1/(1+x²) +∫[0,1]f(x)dx *√(1-x²) 求
∫[0,1]f(x)dx已经是常数
设∫[0,1]f(x)dx=C
那么f(x)=1/(1+x²)+c*√(1-x²)
积分:∫[0,1]f(x)dx=arctanx(0~1)+c[arcsinx /2 +x*√1-x^2 /2 ](0~1)
=π/4+cπ/6=c
c=π/4/(1-π/6)
f(x)=f(x)=1/(1+x²)+π/4*√(1-x²)/(1-π/6)
再问: √1-x²的积分是怎么算的啊。。
再答: x=sint,dx=costdt.换元积分,再把x带回来
再问: 多谢,不过答案错了。。