设f(x)在[a,b]连续且f′(x)>0,证明∫(a,b) xf(x)dx≥(a+b)/2 ∫(a,b)f(x)dx
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 01:00:13
设f(x)在[a,b]连续且f′(x)>0,证明∫(a,b) xf(x)dx≥(a+b)/2 ∫(a,b)f(x)dx
构造函数:F(u)=2∫[a--->u] xf(x)dx-(a+u)∫[a--->u]f(x)dx,u∈[a,b],显然有F(a)=0
F'(u)=2uf(u)-∫[a--->u]f(x)dx-(a+u)f(u)
=uf(u)-af(u)-∫[a--->u]f(x)dx
=f(u)(u-a)-∫[a--->u]f(x)dx
由积分中值定理:∫[a--->u]f(x)dx=f(ξ)(u-a),a
F'(u)=2uf(u)-∫[a--->u]f(x)dx-(a+u)f(u)
=uf(u)-af(u)-∫[a--->u]f(x)dx
=f(u)(u-a)-∫[a--->u]f(x)dx
由积分中值定理:∫[a--->u]f(x)dx=f(ξ)(u-a),a
设f(x)在[a,b]连续且f′(x)>0,证明∫(a,b) xf(x)dx≥(a+b)/2 ∫(a,b)f(x)dx
设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx|
设f(x)在[a,b]上连续,且f(x)>0,证明:∫b a f(x)dx*∫b a 1/f(x)dx≥(b-a)^2
设f(x) 在[a,b] 上连续,且f(x)>0.求证:∫(a,b)f(x)dx*∫(a,bdx/f(x)≥(b-a)^
定积分的证明设函数f(x)在[a,b]上连续且单调递增,求证:∫[b,a] xf(x)dx≥[(a+b)/2]∫[b,a
设f(x)在区间 [a,b]上连续,证明1/(b-a)∫f(x)dx≤(1/(b-a)∫f²(x)dx)^
设f(x)在[a,b]上连续,且f(b)=a,f(a)=b,证明∫(上b下a)f(x)f'(x)dx=1/2(a
设f(x)在区间[a,b]上连续,证明∫上限a,下限b.f(x)dx=∫上限a,下限bf(a+b-x)dx.
设函数f(x)在【a,b】上连续且单调增加,求证∫[a ,b] xf(x)dx >=a+b/2∫[a ,b] f(x)d
设f(x)在[a,b]上连续,且严格单增,证明:(a+b)∫(上b下a)f(x)dx
设函数f(x)在区间[a,b]上连续,证明:∫f(x)dx=f(a+b-x)dx
设f(x)在[a,b]上连续,且f(x)>0,证明:至少存在一点ξ∈(a,b),使得∫f(x)dx=∫f(x)dx.(左