作业帮 > 数学 > 作业

请问sin(x+π/2)=?cos(x+π/2)=?tan(x+π/2)=?cot(x+π/2)=?sec(x+π/2)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 22:30:53
请问sin(x+π/2)=?cos(x+π/2)=?tan(x+π/2)=?cot(x+π/2)=?sec(x+π/2)=?csc(x+π/2)=?
还有sin(x+π)=?cos(x+π)=?tan(x+π)=?cot(x+π)=?sec(x+π)=?csc(x+π)=?
请问sin(x+π/2)=?cos(x+π/2)=?tan(x+π/2)=?cot(x+π/2)=?sec(x+π/2)
sin(x+π/2)=cos x
cos(x+π/2)=-sinx
tan(x+π/2)=sin(x+π/2)÷cos(x+π/2)=cos x÷(-sinx) = -cotx
cot(x+π/2)=1÷tan(x+π/2)=1÷(-cotx)= - tan x
sec(x+π/2)=1÷cos(x+π/2)=1÷(-sinx)=(-1/sinx)
csc(x+π/2)=1÷sin(x+π/2)=1÷(cos x)=1/cosx
sin(x+π)=-sinx
cos(x+π)=-cosx
tan(x+π)=sin(x+π)÷cos(x+π)=(-sinx)÷(-cosx)=tan x
cot(x+π)=1÷tan(x+π)=1÷tan x = cot x
sec(x+π)=1÷cos(x+π)=1÷(-cosx)=(-1/cos x)
csc(x+π)=1÷sin(x+π)=1÷(-sinx)=(-1/sin x)