函数F(X)=X²+8/X.证明:当a>3时,关于X的方程F﹙X﹚=F﹙a﹚有三个实数解
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 11:04:21
函数F(X)=X²+8/X.证明:当a>3时,关于X的方程F﹙X﹚=F﹙a﹚有三个实数解
(1)f1(x)为二次函数,∴y1=ax2+bx+c经过顶点(0,0)和点(1,1)
将顶点(0,0)和点(1,1)分别代入y1=ax2+bx+c中,得:
c=0
1=a+b ∴b=1-a
∵二次函数y=ax2+bx+c的顶点坐标为(-b/2a,(4ac-b2)/4a)
∴-b/2a=0且(4ac-b2)/4a=0(将c=0、b=1-a代入式子中)
得:a=1,b=0
∴f1(x)=x2
f2(x)为反比例函数且与直线y=x有两个交点,∴设两交点为(x,x),(-x,-x)
用两点距离公式=√[(x1-x2)2+(y1-y2)2],得:
∴x=2√2
∴两交点分别为点(2√2,2√2),点(-2√2,-2√2)
将点(2√2,2√2)代入y=k/x中,得k=8
∴f2(x)=8/x
∴f(x)=f1(x)+f2(x)=x2+(8/x)(x≠0)
(2)移项得
x2+8/x-a2-8/a=0
(x-a)(ax2+a2x-8)/(ax)=0
即(x-a)(ax2+a2x-8)=0
x=a是一个解
下面看ax2+a2x-8=0
判别式Δ=a^4+32a=a(a3+32)
因为a>0 所以a(a3+32)>0即Δ>0
所以ax2+a2x-8=0有两个实数解
综上所述当a>3时,关于x的方程x2+8/x=a2+8/a有三个实数解
将顶点(0,0)和点(1,1)分别代入y1=ax2+bx+c中,得:
c=0
1=a+b ∴b=1-a
∵二次函数y=ax2+bx+c的顶点坐标为(-b/2a,(4ac-b2)/4a)
∴-b/2a=0且(4ac-b2)/4a=0(将c=0、b=1-a代入式子中)
得:a=1,b=0
∴f1(x)=x2
f2(x)为反比例函数且与直线y=x有两个交点,∴设两交点为(x,x),(-x,-x)
用两点距离公式=√[(x1-x2)2+(y1-y2)2],得:
∴x=2√2
∴两交点分别为点(2√2,2√2),点(-2√2,-2√2)
将点(2√2,2√2)代入y=k/x中,得k=8
∴f2(x)=8/x
∴f(x)=f1(x)+f2(x)=x2+(8/x)(x≠0)
(2)移项得
x2+8/x-a2-8/a=0
(x-a)(ax2+a2x-8)/(ax)=0
即(x-a)(ax2+a2x-8)=0
x=a是一个解
下面看ax2+a2x-8=0
判别式Δ=a^4+32a=a(a3+32)
因为a>0 所以a(a3+32)>0即Δ>0
所以ax2+a2x-8=0有两个实数解
综上所述当a>3时,关于x的方程x2+8/x=a2+8/a有三个实数解
函数F(X)=X²+8/X.证明:当a>3时,关于X的方程F﹙X﹚=F﹙a﹚有三个实数解
复合函数f(x)=x^2+8/x,证明:当a>3时,关于x的方程f(x)=f(a)有三个实数解.
函数f(x)=x^2+8/x,证明:当a>3时,关于x的方程f(x)=f(a)有三个实数解
函数f(x)=x^2+8/x,证明:当a>3时,关于x的方程f(x)=f(a)有3个实数根.
已知函数f(x)=x|x-a|+2x.若存在a∈[-3,3],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,
设a为实数,函数f(x)= -x^3+3x+a (1)求函数f(x)的极值 (2)当a为何值时,方程f(x)=0恰好有两
已知函数f(x)=|x²-4x+3|,若关于x的方程f(x)-a=x至少有三个不相等的实数根,求实数a的取值范
设f(x)=x/[a(x+2)],若关于x的方程f(x)=x有唯一解,则函数f(x)图象的渐近线是
f(x)=ax²+bx(a≠0),若函数对称轴为x=1,且方程f(x)=x有相等的实数根
已知函数f(x)=2−x−1(x≤0)f(x−1)(x>0),若方程f(x)=x+a有且只有两个不相等的实数根,则实数a
证明:当a>3时,关于x的方程x^2+8/x=a^2+8/a有三个实数解
已知幂函数 f﹙x﹚=x*m,且f﹙2﹚<f﹙3﹚,其中m是关于x的方程x²+x-6=0的一