已知抛物线y=ax^2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 03:17:30
已知抛物线y=ax^2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式.
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标.
(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标,若不存在,请说明理由.
【除第一问外,答得好的有追加财富!】
(1)求抛物线的函数关系式.
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标.
(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标,若不存在,请说明理由.
【除第一问外,答得好的有追加财富!】
(1)将A(-1,0)、B(3,0)、C(0,3)代入y=ax²+bx+c,得
{a-b+c=0
9a+3b+c=0
c=3
解得:{a=-1
b=2
c=3
∴抛物线的函数关系式是y=-x²+2x+3.
(2)抛物线y=-x²+2x+3的对称轴 l 是直线X=1;
∵点C(0,3)关于对称轴 l 的对称点是C′(2,3)
连接C′A,与 l 的交点即为所求的点P,
设直线C′A的解析式是y=kx+b,
将A(-1,0)、C′(2,3)代入,得
{-k+b=0
2k+b=3
解得:{k=1
b=1
∴直线C′A的解析式是y=x+1.
当x=1时,y=2
∴点P的坐标是(1,2)
∴当△PAC的周长最小时,点P的坐标是(1,2).
(3)存在.点M1(1,1)、M2(1,√6)、M3(1,-√6)
{a-b+c=0
9a+3b+c=0
c=3
解得:{a=-1
b=2
c=3
∴抛物线的函数关系式是y=-x²+2x+3.
(2)抛物线y=-x²+2x+3的对称轴 l 是直线X=1;
∵点C(0,3)关于对称轴 l 的对称点是C′(2,3)
连接C′A,与 l 的交点即为所求的点P,
设直线C′A的解析式是y=kx+b,
将A(-1,0)、C′(2,3)代入,得
{-k+b=0
2k+b=3
解得:{k=1
b=1
∴直线C′A的解析式是y=x+1.
当x=1时,y=2
∴点P的坐标是(1,2)
∴当△PAC的周长最小时,点P的坐标是(1,2).
(3)存在.点M1(1,1)、M2(1,√6)、M3(1,-√6)
已知抛物线y=ax^2+bx+c经过点A(-1,0),B(3,0)C(0,3)三点,直线L是抛物线的对称轴.
已知抛物线y=ax^2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
如图,抛物线y=ax²+bx+c经过A(-1,0)B(3,0)C(0,3)三点,直线l是抛物线的对称轴
已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的对称轴.
已知抛物线y ax2+bx+c经过点A(-1,0),B(3,0),C(0,3)三点,直线L是抛物线的对称轴.
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.在线等速度
如图,已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与
已知抛物线y=ax^2+bx+c,经过A(4,0)B(2,3)C(0,3)三点,(1)求抛物线的解析式以及对称轴
如图,抛物线y=ax^+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点P ,与直线B
已知抛物线y=ax^2+bx+c的对称轴是直线x=1,且经过p(3,0),则a-b+c的值为多少?
抛物线y=ax平方+bx+c的对称轴是X=—1且经过点(-3,0)A+b+C=?