阶梯化矩阵1 2 1矩阵A= 0 2 3 R(A)=2 则t=?1 0 t
阶梯化矩阵1 2 1矩阵A= 0 2 3 R(A)=2 则t=?1 0 t
将矩阵A=1 -1 2 ;3 -3 1;-2 2 4 化为阶梯矩阵
试证明:设A为n阶实对称矩阵,且A^2=A,则存在正交矩阵T,使得T^-1AT=diag(Er,0),其中r为秩,Er为
如果矩阵A=(1 2 3,-1 3 2,2 1 t,-2 1 -1)B为三阶非零矩阵,AB=0,t为多少,这
矩阵A=(1 2 3 2 2 1 4 4 t)的标准形为(E2 0 0 0),E为单位矩阵,则t=
设矩阵 [1 2 -2] A=[4 t 3] [3 -1 1],B为4*3非零矩阵满足BA=0,则t=_____
问一道矩阵的问题已知Q=1 2 32 4 t3 6 9P是3阶非零矩阵,且PQ=0,则(A) t=6时,r(P)=1 (
已知矩阵A=|1 2 3||2 4 t||3 6 9|,B为3阶非零矩阵,且满足BA=0,t不等于6,求R(B)
矩阵A 1,2,-2 4,t,3 3,-1,1 而B为3阶非零矩阵,且AB=0,试求t的值?
设矩阵A=-2 1 1 1-2 1 1 1 -2,求正交矩阵T使T^-1AT=T'AT的对角矩阵
设矩阵A=-2 1 1 ,1 -2 1 ,1 1 -2,求正交矩阵T使T-1AT=T'39;AT为对角矩阵.
设矩阵A=[2 -2 0 ; -2 1 - 2 ; 0 -2 0] 求正交矩阵T ,使TAT为对角矩阵 急