离心率为e1的椭圆与离心率为e2的双曲线有相同的焦点,且椭圆长轴的端点,短轴的端点,焦点到双曲线的一条渐近线的距离依次构
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 13:15:04
离心率为e1的椭圆与离心率为e2的双曲线有相同的焦点,且椭圆长轴的端点,短轴的端点,焦点到双曲线的一条渐近线的距离依次构成等比数列,则(e1^2-1)/(e2^2-1)=
设椭圆长半轴为a,则半焦距为c=e1*a,半短轴 b=a√(1-e1²);
设双曲线实轴为m,则其半焦距c=e2*m,实半轴 n=m√(e2²-1),渐近线 my±nx=0;
端点(±a,0)、顶点(0,±b)、右点(±c,0)到渐近线的距离成等差数列,则:
(m*b)²/(m²+n²)=[|n*a|/√(m²+n²)]*[|n*c|/√(m²+n²)],
即 (m*b)²=(n*a)*(n*c) ;
因为 (m/n)²=1/(e2²-1),b²/(a*c)=a²(1-e1²)/(a²*e1)=(1-e1²)/e1,代入上式有:
(e1²-1)/(e2²-1) = -e1;
设双曲线实轴为m,则其半焦距c=e2*m,实半轴 n=m√(e2²-1),渐近线 my±nx=0;
端点(±a,0)、顶点(0,±b)、右点(±c,0)到渐近线的距离成等差数列,则:
(m*b)²/(m²+n²)=[|n*a|/√(m²+n²)]*[|n*c|/√(m²+n²)],
即 (m*b)²=(n*a)*(n*c) ;
因为 (m/n)²=1/(e2²-1),b²/(a*c)=a²(1-e1²)/(a²*e1)=(1-e1²)/e1,代入上式有:
(e1²-1)/(e2²-1) = -e1;
离心率为e1的椭圆与离心率为e2的双曲线有相同的焦点,且椭圆长轴的端点,短轴的端点,焦点到双曲线的一条渐近线的距离依次构
若中心在原点,焦点在坐标轴上的椭圆短轴端点是双曲线y^2-x^2=1的顶点,且该椭圆的离心率与双曲线的离心率的乘积为1,
已知椭圆C的离心率为√6/3,短轴一个端点到右焦点的距离为√3.求椭圆C的方程
椭圆的离心率为根号6/3,短轴一个端点到右焦点的距离为根号3,求椭圆方程
若椭圆两焦点间的距离等于长轴的端点与短轴的断点间的距离,求椭圆的离心率
F1.F2是定点P是以F1.F2为公共焦点的椭圆和双曲线交点,F1垂直F2,e1.e2是椭圆.双曲线离心率
椭圆的焦距等于长轴的一个端点与短轴的一个端点之间的距离,椭圆的离心率为多少谢谢了,
设e1、e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的...
已知椭圆C的中心在坐标原点,焦点F1,F2在x轴上,椭圆C的离心率为2分之1,短轴一个端点到右焦点F2的距离为2,求椭圆
已知椭圆与双曲线x 2 -y 2 =0有相同的焦点,且离心率为 .
焦点在x轴上,其长轴端点与相近的焦点的距离为1,与相近的一条准线的距离为5/3,求椭圆的离心率
椭圆短轴的一个端点与两焦点练成120角,呢么该椭圆的离心率是多少