作业帮 > 数学 > 作业

对1/(4x^2)(1+4x^2)微积分,

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 18:11:57
对1/(4x^2)(1+4x^2)微积分,
对1/(4x^2)(1+4x^2)微积分,
微分:
d/dx 1/[(4x²)(1 + 4x²)] = d/dx 1/(16x⁴ + 4x²)
= - (16x⁴ + 4x²)'/(16x⁴ + 4x²)²
= - (16 * 4x³ + 4 * 2x)/[(4x²)²(1 + 4x²)²]
= - 8x(8x² + 1)/(16x⁴(1 + 4x²)²]
= - (1 + 8x²)/[2x³(1 + 4x²)²]
积分:
∫ 1[(4x²)(1 + 4x²)] dx
= ∫ [(4x² + 1) - 4x²]/[(4x²)(1 + 4x²)] dx
= ∫ [1/(4x²) - 1/(1 + 4x²)] dx
= (1/4)∫ 1/x² dx - (1/2)∫ 1/[1 + (2x)²] d(2x)
= (1/4)(- 1/x) - (1/2)arctan(2x) + C
= - 1/(4x) - (1/2)arctan(2x) + C