作业帮 > 数学 > 作业

幂级数的绝对值级数发散,则原幂级数发散,

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 11:52:27
幂级数的绝对值级数发散,则原幂级数发散,
幂级数的绝对值级数发散,则原幂级数发散,
不对.
  幂级数有以下性质:
  (1)幂级数至少有一个收敛点.
  (2)幂级数在其收敛区间内是绝对收敛的,在收敛区间的端点发散、绝对收敛和条件收敛都是可能的.
  所以,你的结论不成立.
再问: 我不管那个区间成立的问题,只管 若已知在某个区间里,绝对值收敛,则原幂级数收敛
再答:   绝对收敛必收敛,这个性质不止在幂级数成立,对所有类型的级数都成立。   绝对值级数发散,则原级数发散。这里有个充分条件,就是“如果一个级数是利用比值判别法或根式判别法判别其非绝对收敛,则可断定原级数必发散。”而幂级数的收敛区间正是利用比值判别法或根式判别法来求得的。而在收敛区间的端点的绝对收敛性不是用这两种判别法来判别的,所以你说的这种情况在收敛区间的端点不成立。