cggf
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 23:38:37
解题思路: 先由零点的存在性定理可判断D不正确;结合反例“f(x)=x(x-1)(x+1)在区间[-2,2]上满足f(-2)f(2)<0,但其存在三个解{-1,0,1}”可判定B不正确;结合反例“f(x)=(x-1)(x+1)在区间[-2,2]上满足f(-2)f(2)>0,但其存在两个解{-1,1}”可判定A不正确,进而可得到答案.
解题过程:
解:由零点存在性定理可知选项D不正确;
对于选项B,可通过反例“f(x)=x(x-1)(x+1)在区间[-2,2]上满足f(-2)f(2)<0,但其存在三个解{-1,0,1}”推翻;
同时选项A可通过反例“f(x)=(x-1)(x+1)在区间[-2,2]上满足f(-2)f(2)>0,但其存在两个解{-1,1}”;
故选C.
最终答案:略
解题过程:
解:由零点存在性定理可知选项D不正确;
对于选项B,可通过反例“f(x)=x(x-1)(x+1)在区间[-2,2]上满足f(-2)f(2)<0,但其存在三个解{-1,0,1}”推翻;
同时选项A可通过反例“f(x)=(x-1)(x+1)在区间[-2,2]上满足f(-2)f(2)>0,但其存在两个解{-1,1}”;
故选C.
最终答案:略