作业帮 > 数学 > 作业

3a+4b≥12,则(a+1)²+b²的最小值为

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 20:50:29
3a+4b≥12,则(a+1)²+b²的最小值为
没说a和b的取值范围
的确是≥12没打错
3a+4b≥12,则(a+1)²+b²的最小值为
答:
以a为横坐标、b为纵坐标建立直角坐标系
3a+4b>=12表示直线b=(-3/4)a+3及其上方的区域
(a+1)²+b²表示点(a,b)到点(-1,0)的距离的平方值
点到直线的距离最小为垂线段:
d>=|-3+0-12|/√(3^2+4^2)=15/5=3
所以:d^2>=9
所以:(a+1)²+b²的最小值为9