是否存在一个反演变换使得不等大的圆变成等大的圆?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 20:55:35
是否存在一个反演变换使得不等大的圆变成等大的圆?
1)如果两个圆相切(内切,外切)
2)两个圆相交
3)两个圆相离
要求图片上表示出来,最好是几何画板的截图
1)如果两个圆相切(内切,外切)
2)两个圆相交
3)两个圆相离
要求图片上表示出来,最好是几何画板的截图
只要两圆不同心,这个反演变换一定存在,具体刻画如下:
对于平面上两个半径不等且圆心不同的圆⊙A, ⊙B.
总存直线AB上的两点M,N,使得分别存在以M,N为中心的位似变换,将⊙A变为⊙B.
根据位似比的正负将二者区分为外位似中心M和内位似中心N.
(当相应的公切线存在时,内,外位似中心就是两圆内,外公切线的交点).
由位似的性质可得:
当两圆不内含或内切时,存在⊙M,使得关于⊙M的反演交换将⊙A变为⊙B (同时⊙B变为⊙A);
当两圆不外离或外切时, 存在⊙N,使得关于⊙N的反演交换将⊙A变为⊙B (同时⊙B变为⊙A).
于是根据两圆的位置关系,可以得到一个或两个圆,记为轨迹Γ.
结论是:以轨迹Γ上任意一点O为圆心的反演变换将⊙A和⊙B映为等圆.
其中包括一个极限情形:两圆相交时轨迹Γ也过两圆交点,若取O为交点,
则⊙A,⊙B都反演为直线,即半径无穷大的"等圆".
如果不接受半径无穷大的概念,可以从轨迹Γ中去掉交点.
以上结论我是用解析法计算得到的,虽然计算比较简单,但是感觉应该有更好的证法.
因此不在这里写证明了,等想到好方法再说 (需要的话请追问).
这里就附一下图.
说明:图中的绿色和蓝色大圆分别是⊙A,⊙B;
紫色虚线圆是轨迹Γ,也即⊙M,⊙N;
红色圆⊙O1,⊙O2是圆心分别在⊙M,⊙N上的反演圆;
反演得到的圆都以与原来相同的颜色表明.
半径相等这一点至少看上去是对的 (需要怎样的明确表示也请追问).
a) 相交情形:
b) 外离情形:
c) 内含情形:
不论内切外切都只是⊙M与⊙N之一退化为1点的情形,并没有太大区别.
所以暂时不附了,
对于平面上两个半径不等且圆心不同的圆⊙A, ⊙B.
总存直线AB上的两点M,N,使得分别存在以M,N为中心的位似变换,将⊙A变为⊙B.
根据位似比的正负将二者区分为外位似中心M和内位似中心N.
(当相应的公切线存在时,内,外位似中心就是两圆内,外公切线的交点).
由位似的性质可得:
当两圆不内含或内切时,存在⊙M,使得关于⊙M的反演交换将⊙A变为⊙B (同时⊙B变为⊙A);
当两圆不外离或外切时, 存在⊙N,使得关于⊙N的反演交换将⊙A变为⊙B (同时⊙B变为⊙A).
于是根据两圆的位置关系,可以得到一个或两个圆,记为轨迹Γ.
结论是:以轨迹Γ上任意一点O为圆心的反演变换将⊙A和⊙B映为等圆.
其中包括一个极限情形:两圆相交时轨迹Γ也过两圆交点,若取O为交点,
则⊙A,⊙B都反演为直线,即半径无穷大的"等圆".
如果不接受半径无穷大的概念,可以从轨迹Γ中去掉交点.
以上结论我是用解析法计算得到的,虽然计算比较简单,但是感觉应该有更好的证法.
因此不在这里写证明了,等想到好方法再说 (需要的话请追问).
这里就附一下图.
说明:图中的绿色和蓝色大圆分别是⊙A,⊙B;
紫色虚线圆是轨迹Γ,也即⊙M,⊙N;
红色圆⊙O1,⊙O2是圆心分别在⊙M,⊙N上的反演圆;
反演得到的圆都以与原来相同的颜色表明.
半径相等这一点至少看上去是对的 (需要怎样的明确表示也请追问).
a) 相交情形:
b) 外离情形:
c) 内含情形:
不论内切外切都只是⊙M与⊙N之一退化为1点的情形,并没有太大区别.
所以暂时不附了,
是否存在一个比无穷大还大的数?
反演法反演什么?反演的是一个过程还是反演一段时间,然后看这段时间里发生了什么?
求图中阴影部分的面积(两个正方形一个正方形边长5cm一个正方形边长4cm大正方形里有一个等高不等低的三角形
代数 提问1判断 是否存在 整数 X 使得 x的平方+20 为一个完全平方2判断 是否存在 整数 X 使得 x的平方+1
有两个大小不等的圆,大圆的圆周率比小圆的大.______(判断对错)
是否存在实数m,使得2x+m0的充要条件?
地球是一个大磁体,它的周围存在磁场
两个质量不等的物体具有相等的动能,质量大的物体的动量大
关于x的方程kx2+(k+2)x+4分之k=0有两不等实根 1 求k取值 2是否存在实数k 使得方程的两个实数根的倒数和
hand变换一个字母变成一个新的单词
给你两个大小不等的正方形,你能把它拼成一个大正方形吗?说明你的拼法道理
给你两个大小不等的正方形,你能通过切割把它们拼接成一个大正方形吗?