∫(x^2-a^2)^1/2dx=?要详细过程,答案是1/2[x(x^2-a^2)^1/2+a^2㏑|x+(x^2-a^
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/23 21:29:35
∫(x^2-a^2)^1/2dx=?要详细过程,答案是1/2[x(x^2-a^2)^1/2+a^2㏑|x+(x^2-a^2)^1/2|]
∫[√(x²-a²)]dx=?
设x=asecu,则dx=asecutanudu,x²-a²=a²(sec²u-1)=a²tan²u,√(x²-a²)=atanu,
secu=x/a,tanu=[√(x²-a²)]/a.
代入原式得:∫[√(x²-a²)]dx=a²∫tan²usecudu=a²∫secu(sec²u-1)du=a²[∫sec³udu-∫secudu]
=a²[(1/2)secutanu+(1/2)ln(secu+tanu)-ln(secu+tanu)]+lnc₁
=a²[(1/2)secutanu-(1/2)ln(secu+tanu)]+lnc₁
=(1/2)[(x√(x²-a²)]-(a²/2)ln[(x/a)+(1/a)√(x²-a²)]+lnc₁
=(1/2){x√(x²-a²)-a²[ln(x+√(x²-a²)-lna]}+lnc₁
=(1/2){x√(x²-a²)-a²ln[x+√(x²-a²)]}+a²ln(ac₁)
=(1/2){x√(x²-a²)-a²ln[x+√(x²-a²)]}+C
[原答案错个符号].
设x=asecu,则dx=asecutanudu,x²-a²=a²(sec²u-1)=a²tan²u,√(x²-a²)=atanu,
secu=x/a,tanu=[√(x²-a²)]/a.
代入原式得:∫[√(x²-a²)]dx=a²∫tan²usecudu=a²∫secu(sec²u-1)du=a²[∫sec³udu-∫secudu]
=a²[(1/2)secutanu+(1/2)ln(secu+tanu)-ln(secu+tanu)]+lnc₁
=a²[(1/2)secutanu-(1/2)ln(secu+tanu)]+lnc₁
=(1/2)[(x√(x²-a²)]-(a²/2)ln[(x/a)+(1/a)√(x²-a²)]+lnc₁
=(1/2){x√(x²-a²)-a²[ln(x+√(x²-a²)-lna]}+lnc₁
=(1/2){x√(x²-a²)-a²ln[x+√(x²-a²)]}+a²ln(ac₁)
=(1/2){x√(x²-a²)-a²ln[x+√(x²-a²)]}+C
[原答案错个符号].
∫1/x√(a^2-x^2)dx
x/√(x^2+a^2)dx
不定积分求法,∫(2x+1)/x(x-1)^2dx,书上是设((2x+1)/[x(x-1)²]=A/x+b/(
求定积分∫(a到b)ln(1+x)/(1+x^2)dx的详细过程和答案,谢谢
1,证明f(x)(a,-a)的积分=f(-x)(a,-a)的积分 2,∫√(1-x)/x√(1+x)*dx
x^2+x+a
求不定积分∫√(x^2+a^2)dx,要详细过程...
积分符号[(x-a)(b-x)]^(-1/2) dx求不定积分 要求思路过程
∫dx/x(a+bx)及∫dx/x(a+bx)^2及∫dx/x(a+bx^2)?
∫(x^2+a^2)^(-1/2)dx=?
已知a^2x=根号2+1求(a^3X+a^-3X)/(a^X+a^-X)
已知a^2x=根号2+1,求(a^3x+a^-3x)/(a^x+a^-x)