知cost/(1-sint)=1/[(pai/1)-1]如何得出tan(t/2)=(pai-2)/2
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 18:52:18
知cost/(1-sint)=1/[(pai/1)-1]如何得出tan(t/2)=(pai-2)/2
cost/(1-sint)
=(cos^2(t/2)-sin^2(t/2))/(sin^2(t/2)+cos^2(t/2)-2sin(t/2)cos(t/2))
=(1-tan^2(t/2))/(tan^2(t/2)+1-2tan(t/2))
=1/(1/π-1)
(1-tan^2(t/2))(1/π-1)=tan^2(t/2)+1-2tan(t/2)
令tan(t/2)=x
(1-x^2)(1/π-1)=x^2-2x+1
1/π-1-x^2/π+x^2=x^2-2x+1
1/π-x^2/π=-2x+2
x^2-2πx+2π-1=0
(x-π)^2=(π-1)^2
x-π=π-1 (1-π舍去)
x=2π-1
所以tan(t/2)=2π-1
=(cos^2(t/2)-sin^2(t/2))/(sin^2(t/2)+cos^2(t/2)-2sin(t/2)cos(t/2))
=(1-tan^2(t/2))/(tan^2(t/2)+1-2tan(t/2))
=1/(1/π-1)
(1-tan^2(t/2))(1/π-1)=tan^2(t/2)+1-2tan(t/2)
令tan(t/2)=x
(1-x^2)(1/π-1)=x^2-2x+1
1/π-1-x^2/π+x^2=x^2-2x+1
1/π-x^2/π=-2x+2
x^2-2πx+2π-1=0
(x-π)^2=(π-1)^2
x-π=π-1 (1-π舍去)
x=2π-1
所以tan(t/2)=2π-1
把曲线的参数方程化为一般方程:x=3sint,y=4sint,z=5cost (0小于等于t小于2pai)
cosx/(1-sinx)=1/(pai/2-1) 为什么能推得 tan(x/2)=(pai-2)/2
设tan(pai+a)=2,则sin(a-pai)+cos(pai-a)/sin(pai+a)-cos(pai+a)等于
已知a属于(pai/2,pai),tan(a+pai/4)=1/7,sin a+cos a=?
如何直接看出0到pai/2定积分cost/(sint+cost)与sint/(sint+cost)相等?
a∫1/sint*dt-a∫sint*dt =a*ln|tan(t/2)|+a*cost+C
三角函数之求值问题sin(pai/6-α)=1/3则cos(2pai/3+2α)= (pai为圆周率)
若sin(pai-x)=log8 (1/4),且x属于(-pai/2,0),则cos(2pai-x)的值是多少
若sin(pai-a)=log8 (1/4),且a属于(-pai/2,0),则cos(pai+a)的值为?
f x =sin(pai*x/4-pai/6)-2(cos pai*x/8)^2+1
求极限.lim x->1 (x-1)*tan((pai*x)/2)
已知cosx=-5分之4,x属(于2分之pai,pai)求tan(4分之pai-x)=