(上限x,下限0)x∫f(t)dt + ∫f(t)tdt的导数
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 05:40:58
(上限x,下限0)x∫f(t)dt + ∫f(t)tdt的导数
为什么是∫f(t)dt + xf(x) + xf(x),怎么导出来的?
尤其是(上限x,下限0)∫f(t)tdt的导数怎么求的
为什么是∫f(t)dt + xf(x) + xf(x),怎么导出来的?
尤其是(上限x,下限0)∫f(t)tdt的导数怎么求的
[ x∫[0,x]f(t)dt+∫[0,x]f(t)tdt ]'=∫[0,x]f(t)dt+xf(x)+f(x)x
设F(x)=∫f(x)dx ∫[0,x]f(t)dt=F(x)-F(0) x∫[0,x]f(t)dt=x[F(x)-F(0)]
[x∫[0,x]f(t)dt ]'=[ x[F(x)-F(0)] ]'=[F(x)-F(0)]+ x[F(x)-F(0)]'
=∫[0,x]f(t)dt +xF'(x)
=∫[0,x]f(t)dt +xf(x)
G(x)=∫f(x)xdx ∫[0,x]f(t)tdt=G(x)-G(0) [∫[0,x] f(t)tdt ]'= G'(x)=f(x)x
设F(x)=∫f(x)dx ∫[0,x]f(t)dt=F(x)-F(0) x∫[0,x]f(t)dt=x[F(x)-F(0)]
[x∫[0,x]f(t)dt ]'=[ x[F(x)-F(0)] ]'=[F(x)-F(0)]+ x[F(x)-F(0)]'
=∫[0,x]f(t)dt +xF'(x)
=∫[0,x]f(t)dt +xf(x)
G(x)=∫f(x)xdx ∫[0,x]f(t)tdt=G(x)-G(0) [∫[0,x] f(t)tdt ]'= G'(x)=f(x)x
(上限x,下限0)x∫f(t)dt + ∫f(t)tdt的导数
变上限积分F(x)=∫(上限x,下限0)tf(t)dt,求F(x)的导数
变上限积分求导∫(下限0,上限X)f(x-t)dt的导数是什么
求∫(t*t-x*x)sin tdt的导数,上限x,下限0
若函数f(x)连续,且F(X)的导数等于f(x),求∫f(t+a)dt,其中积分上限是x,积分下限是0,
若函数f(x)具有连续的导数,则d/dx∫上限是x下限是0 (x-t)f '(t)dt=?
对积分求导的题目:∫(上限x下限a)t*f(t) dt 求他的导数
一个导数积分的问题∫(上限x,下限0)f(t)dt=2e^(3x)-2 如何对两边求导求出f(x)
f(x)在[1,+∞)内有连续的导数,且满足x-1+x∫(上限x,下限1)f(t)dt=(x+1)∫(上限x,下限1)t
计算∫(上限1下限0)f(x)/√x dx,其中f(x)=∫(上限x下限1)In(t+1)/t dt.
计算∫(上限1下限0)f()x/√x dx,其中f(x)=∫(上限x下限1)In(t+1)/t dt.
(∫x上限0下限ln(1+t)dt)的导数等于?