求证:cos(α+β)cos(α-β)=cos^2 α-sin^2 β sin(α+β)sin(α-β)=sin^2 α
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/20 01:49:14
求证:cos(α+β)cos(α-β)=cos^2 α-sin^2 β sin(α+β)sin(α-β)=sin^2 α-sin^2 β
cos(α+β)cos(α-β)=cos^2 α-sin^2 β和sin(α+β)sin(α-β)=sin^2 α-sin^2 β
cos(α+β)cos(α-β)=cos^2 α-sin^2 β和sin(α+β)sin(α-β)=sin^2 α-sin^2 β
因为 cos(a+b) = cos(a)cos(b) - sin(a)sin(b)
所以 cos[(α+β)+(α-β)] = cos(α+β)cos(α-β) - sin(α+β)sin(α-β)
即 cos(2α) = cos(α+β)cos(α-β) - sin(α+β)sin(α-β) ---------- (1)
同理,因为 cos(a-b) = cos(a)cos(b) + sin(a)sin(b)
可得 cos[(α+β)-(α-β)] = cos(α+β)cos(α-β) + sin(α+β)sin(α-β)
即 cos(2β) = cos(α+β)cos(α-β) + sin(α+β)sin(α-β) ---------- (2)
(1)(2)两式相加,得
cos(2α) + cos(2β) = 2cos(α+β)cos(α-β) ---------- (3)
因为 cos(2α) = cos(α+α) = cos^2(a) - sin^2(a) = cos^2(a) - sin^2(a) + 1 - 1 = 2cos^2(a) - 1
同理 cos(2β) = cos^2(β) - sin^2(β) - 1 + 1 = 1 - 2sin^2(β)
所以(3)式左边变为 2cos^2(a) - 2sin^2(β)
即得 cos(α+β)cos(α-β) = cos^2(α) - sin^2(β)
原题得证.
-----------------------------------------------------------------------------------
第二个等式的证明原理相同,都是先化出(3)式,然后得出最后结果.
(3)式的这个等式就叫做“和差化积”.
除了上面出现的(3)式外,还有
cos(2β) - cos(2α) = 2sin(α+β)sin(α-β) ---------- (4)
sin(2α) + sin(2β) = 2sin(α+β)cos(α-β)
sin(2α) - sin(2β) = 2cos(α+β)sin(α-β)
观察欲证明的第二个等式,可知,需要用到的“和差化积”等式为(4)式.
所以 cos[(α+β)+(α-β)] = cos(α+β)cos(α-β) - sin(α+β)sin(α-β)
即 cos(2α) = cos(α+β)cos(α-β) - sin(α+β)sin(α-β) ---------- (1)
同理,因为 cos(a-b) = cos(a)cos(b) + sin(a)sin(b)
可得 cos[(α+β)-(α-β)] = cos(α+β)cos(α-β) + sin(α+β)sin(α-β)
即 cos(2β) = cos(α+β)cos(α-β) + sin(α+β)sin(α-β) ---------- (2)
(1)(2)两式相加,得
cos(2α) + cos(2β) = 2cos(α+β)cos(α-β) ---------- (3)
因为 cos(2α) = cos(α+α) = cos^2(a) - sin^2(a) = cos^2(a) - sin^2(a) + 1 - 1 = 2cos^2(a) - 1
同理 cos(2β) = cos^2(β) - sin^2(β) - 1 + 1 = 1 - 2sin^2(β)
所以(3)式左边变为 2cos^2(a) - 2sin^2(β)
即得 cos(α+β)cos(α-β) = cos^2(α) - sin^2(β)
原题得证.
-----------------------------------------------------------------------------------
第二个等式的证明原理相同,都是先化出(3)式,然后得出最后结果.
(3)式的这个等式就叫做“和差化积”.
除了上面出现的(3)式外,还有
cos(2β) - cos(2α) = 2sin(α+β)sin(α-β) ---------- (4)
sin(2α) + sin(2β) = 2sin(α+β)cos(α-β)
sin(2α) - sin(2β) = 2cos(α+β)sin(α-β)
观察欲证明的第二个等式,可知,需要用到的“和差化积”等式为(4)式.
求证sin^2α+sin^2β-sin^2αsin^2β+cos^2cos^2β=1
求证sinα-sinβ=2cos(α+β)/2sin(α-β)/2
求证 sinαcosβ=1/2[sin(α+β)+sin(α-β)]
若α β是锐角tanβ=sinα -cosα / sinα + cosα 求证sinα -cosα=根号2sinβ
当α β是锐角tanθ=sinα -cosα / sinα + cosα 求证sinα -cosα=根号2sinθ
2sinα=sinθ+cosθ,sin²β==sinθcosθ.求证cos2β=2cos2α=2cos
求证:[sin(2α+β)/2sinα]-cos(α+β)=sinβ/2sinα
sinα^2+sinβ^2+sinγ^2=1,那么cosαcosβcosγ最大值等于
已知sin(α+β)=1/2,sin(α-β)=1/3 (1)求证:sinα*cosβ=5cosα*sinβ
已知sinθ+cosθ=2sinα,sinθcosθ=(sinβ)^2,求证4(cos2α)^2=(cos2β)^2
已知sinθ+cosθ=2sinα,sinθ·cosθ=sin²β,求证:2cos2α=cos2β.
三角数列题:sinθ sinα cosθ成等差数列,sinθ sinβ cosθ为等比数列,求证2COS2α=cos2β