作业帮 > 数学 > 作业

锐角α,β满足sinβ=mcos(α+β)sinα(m>0,α+β≠90°)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 03:16:36
锐角α,β满足sinβ=mcos(α+β)sinα(m>0,α+β≠90°)
令x=tanα,y=tanβ,
(1)y=f(x)的表达式
(2)当α∈[45°,90°)时,求函数f(x)的最大值
锐角α,β满足sinβ=mcos(α+β)sinα(m>0,α+β≠90°)
sinβ=sin[(α+β)-α]=mcos(α+β)sinα
sin(α+β)cosα-cos(α+β)sinα=mcos(α+β)sinα
sin(α+β)cosα=mcos(α+β)sinα+cos(α+β)sinα=(m+1)cos(α+β)sinα
tan(α+β)=(m+1)tana
(x+y)/(1-xy)=(m+1)x
x+y=(m+1)x-(m+1)x²y
y[1+(m+1)x²]=mx
y=mx/[1+(m+1)x²]
=m/[(m+1)x+1/x]

f(x)=m/[(m+1)x+1/x]
(2)
因为α∈[π/4,π/2)
所以x≥1
函数[(m+1)x+1/x] ‘=(m+1)-1/x²>0
所以函数[(m+1)x+1/x单调增,
f(x)单调减,
f(x)(MAX)=f(1)=m/(m+2)