作业帮 > 数学 > 作业

lim(1/n的三次方+1)+(4/n的三次方+2)一直到+n的平方/n的三次方+n的极限

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 15:09:26
lim(1/n的三次方+1)+(4/n的三次方+2)一直到+n的平方/n的三次方+n的极限
lim(1/n的三次方+1)+(4/n的三次方+2)一直到+n的平方/n的三次方+n的极限
设Sn = 1/(n³ + 1) + 4/(n³ + 2) + 9/(n³ + 3) + ...+ n²/(n³ + n) = Σ(k=1~n) k²/(n³ + k)
k²/(n³ + n) ≤ k²/(n³ + k) ≤ k²/n³
(1 + 4 + 9 + ...+ n²)/(n³ + n) ≤ Sn ≤ (1 + 4 + 9 + ...+ n²)/n³
lim(n-->∞) (1 + 4 + 9 + ...+ n²)/(n³ + n) = lim(n-->∞) (1/6)n(n+1)(2n+1)/(n³+n) = 1/3
lim(n-->∞) (1 + 4 + 9 + ...+ n²)/n³ = 1/6)n(n+1)(2n+1)/n³ = 1/3
∴lim(n-->∞) Sn = 1/3
==> lim(n-->∞) 1/(n³ + 1) + 4/(n³ + 2) + 9/(n³ + 3) + ...+ n²/(n³ + n) = 1/3