作业帮 > 数学 > 作业

关于cos(f(x))函数积分的不等式问题

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 09:02:47
关于cos(f(x))函数积分的不等式问题
第一题
f(x)在[a,b]上可导,f'(x)递减,|f'(x)|>=m>0,证|积分a到b cosf(x)dx|<=2/m
第二题
f(x)在[a,无穷]上可微,且x->无穷,f'(x)单增趋于无穷
则积分a到无穷sin(f(x))dx和积分a到无穷cos(f(x))dx都收敛
关于cos(f(x))函数积分的不等式问题
第一题
\int_a^b cos(f(x)) dx = \int_a^b 1/f'(x) * cos(f(x))f'(x) dx
由导函数的介值性质,f'(x)保持同号,由积分第二中值定理得到
\int_a^b 1/f'(x) * cos(f(x))f'(x) dx
= 1/f'(a) \int_a^\xi cos(f(x))f'(x) dx
= 1/f'(a) [sin(f(\xi))-sin(f(a))]
或者
\int_a^b 1/f'(x) * cos(f(x))f'(x) dx
= 1/f'(b) \int_\xi^b cos(f(x))f'(x) dx
= 1/f'(b) [sin(f(b))-sin(f(\xi))]
取决于f'(x)的符号
不论哪种情况都可以得到结论.
第二题
任取\epsilon>0,存在G>a,当x>G时f'(x)>\epsilon^{-1}
利用第一题的结论,对于任何u,v>G,|\int_v^u cos(f(x)) dx|