作业帮 > 数学 > 作业

求证3+cos4α-4cos2α=(8sinα)^4

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 11:55:52
求证3+cos4α-4cos2α=(8sinα)^4
证(1-cos2α)/(1+cos2α)=tan²α
(1+sin2α)/(cosα+sinα)=cosα+sinα
求证3+cos4α-4cos2α=(8sinα)^4
证明:1)3+cos4α-4cos2α=2+(1+cos4α)-4cos2α
=2+2(cos2α)^2-4cos2α
=2[1+(cos2α)^2-2cos2α]
=2(1-cos2α)^2
=2*{1-[(cosα)^2-(sinα)^2}^2
=2*{1-(cosα)^2+(sinα)^2}^2
=2*{2(sinα)^2}^2
=8*(sinα)^4
2)(1-cos2α)/(1+cos2α)={1-[(cosα)^2-(sinα)^2]}/{1+[(cosα)^2-(sinα)^2]}
={1-(cosα)^2+(sinα)^2}/{1-(sinα)^2+(cosα)^2}
=2(sinα)^2/{2(cosα)^2}
=tan²α
3)(1+sin2α)/(cosα+sinα)=(sin²α+cos²α+2sinαcosα)/(cosα+sinα)
=(cosα+sinα)^2/(cosα+sinα)
=cosα+sinα