111数学题
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 07:59:04
弟34提
解题思路: 设招聘甲工种工人x人,则乙工种工人(150-x)人,根据甲、乙两种工种的工人的工资列出一次函数关系式,由乙种工种的人数不少于甲种工种人数的2倍,求自变量x的取值范围,根据一次函数的性质求工资的最小值.
解题过程:
解:设招聘甲工种工人x人,则乙工种工人(150-x)人,每月所付的工资为y元,
则y=600x+1000(150-x)=-400x+150000,
∵(150-x)≥2x,x≤50,
而-400<0,
∴当x=50时,y最小=-400×50+150000=130000元.
答:招聘甲50人,乙100人时,可使得每月所付的工资最少
最终答案:略
解题过程:
解:设招聘甲工种工人x人,则乙工种工人(150-x)人,每月所付的工资为y元,
则y=600x+1000(150-x)=-400x+150000,
∵(150-x)≥2x,x≤50,
而-400<0,
∴当x=50时,y最小=-400×50+150000=130000元.
答:招聘甲50人,乙100人时,可使得每月所付的工资最少
最终答案:略