证明当n》2时,1+1/2+1/3+...+1/2^n》(7n+11)/12
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 01:11:29
证明当n》2时,1+1/2+1/3+...+1/2^n》(7n+11)/12
可用数学归纳法证明:
当n=2时,左边=1+1/2+1/3+1/4=25/12,右边=(7×2+11)12=25/12.原不等式成立.
假设n=k(k≥2)时命题成立.即1+1/2+1/3+…+1/2^k≥(7k+11)/12
那么,当n=k+1时
1+1/2+1/3+…+1/2^(k+1)≥(7k+11)/12+1/(2^k+1)+1/(2^k+2)+…+1/2^(k+1)
而1/(2^k+1)+1/(2^k+2)+…+1/2^(k+1)
=1/(2^k+1)+1/(2^k+2)+…+1/[2^k+2^(k-1)]+1/[(2^k+2^(k-1)+1]+1/[(2^k+2^(k-1)+2]+…+1/2^(k+1)
≥2^(k-1)/[2^k+2^(k-1)]+2^(k-1)/2^(k+1)=7/12
于是,1+1/2+1/3+…+1/2^(k+1)≥(7k+11)/12+7/12=[7(k+1)+11]/12
所以,n=k+1时命题成立.
故对于一切n≥2,不等式1+1/2+1/3+...+1/2^n≥(7n+11)/12 都成立.
当n=2时,左边=1+1/2+1/3+1/4=25/12,右边=(7×2+11)12=25/12.原不等式成立.
假设n=k(k≥2)时命题成立.即1+1/2+1/3+…+1/2^k≥(7k+11)/12
那么,当n=k+1时
1+1/2+1/3+…+1/2^(k+1)≥(7k+11)/12+1/(2^k+1)+1/(2^k+2)+…+1/2^(k+1)
而1/(2^k+1)+1/(2^k+2)+…+1/2^(k+1)
=1/(2^k+1)+1/(2^k+2)+…+1/[2^k+2^(k-1)]+1/[(2^k+2^(k-1)+1]+1/[(2^k+2^(k-1)+2]+…+1/2^(k+1)
≥2^(k-1)/[2^k+2^(k-1)]+2^(k-1)/2^(k+1)=7/12
于是,1+1/2+1/3+…+1/2^(k+1)≥(7k+11)/12+7/12=[7(k+1)+11]/12
所以,n=k+1时命题成立.
故对于一切n≥2,不等式1+1/2+1/3+...+1/2^n≥(7n+11)/12 都成立.
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
证明当自然数n>=4时,n^3>3n^2+3n+1
试证明:当n为自然数时,n(2n+1)-2n(n-1)一定是3的倍数
当n大于等于2,n∈N时,证明:2小于(1+1/n)∧n小于3?
用数学归纳法证明 (n+1)(n+2)…(n+n)=2^n·1·3·……·(2n-1)(n∈N*),从假定当n=k时公式
若n∈N*,则当n=1或n≥5时,n^2<2n;证明所得的结论; 当n=5时,
证明3^n-2^n>2^n,(n>1,n∈Z)
证明(1+2/n)^n>5-2/n(n属于N+,n>=3)
证明:n属于z,当n大于等于3时,2的n次幂大于2n+1
证明不等式 1+2n+3n
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n n)) 当N越于无穷大
当n为正偶数,求证n/(n-1)+n(n-2)/(n-1)(n-3)+...+n(n-2).2/(n-1)(n-3)..