已知数列an满足a(n+1)=an-a(n-1) (n≥2) ,a1=1 ,a2=3 ,记Sb=a1+a2+...+an
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 00:53:29
已知数列an满足a(n+1)=an-a(n-1) (n≥2) ,a1=1 ,a2=3 ,记Sb=a1+a2+...+an ,则 a100=?S100=?
(1)
n≥2时,
a(n+1)=an-a(n-1)
a(n+2)=a(n+1)-an
a(n+2)+a(n+1)=a(n+1)-a(n-1)
a(n+2)=-a(n-1)
a(n+3)=-an
a(n+6)=-a(n+3)=an
数列{an}是以6为周期的周期数列
a100=a(6×16+4)=a4=-a(4-3)=-a1=-1
(2)
a3=a2-a1=3-1=2
a(n+1)=an-a(n-1)
an=a(n-1)-a(n-2)
a(n-1)=a(n-2)-a(n-3)
…………
a3=a2-a1
累加
a3+a4+...+an=a(n-1)-a1
Sn=a1+a2+a3+...+an=a1+a2+a(n-1)-a1=a2+a(n-1)
S100=a2+a(100-1)=a2+a99
a99=a(6×16+3)=a3=2
S100=a2+a99=3+2=5
n≥2时,
a(n+1)=an-a(n-1)
a(n+2)=a(n+1)-an
a(n+2)+a(n+1)=a(n+1)-a(n-1)
a(n+2)=-a(n-1)
a(n+3)=-an
a(n+6)=-a(n+3)=an
数列{an}是以6为周期的周期数列
a100=a(6×16+4)=a4=-a(4-3)=-a1=-1
(2)
a3=a2-a1=3-1=2
a(n+1)=an-a(n-1)
an=a(n-1)-a(n-2)
a(n-1)=a(n-2)-a(n-3)
…………
a3=a2-a1
累加
a3+a4+...+an=a(n-1)-a1
Sn=a1+a2+a3+...+an=a1+a2+a(n-1)-a1=a2+a(n-1)
S100=a2+a(100-1)=a2+a99
a99=a(6×16+3)=a3=2
S100=a2+a99=3+2=5
已知数列{an}满足a1=1;an=a1+2a2+3a3+...+(n-1)a(n-1);
已知数列{an}中满足a1=1,a(n+1)=2an+1 (n∈N*),证明a1/a2+a2/a3+…+an/a(n+1
已知数列{an}满足a1=1,a2=3,a(n+2)=3a(n+1)-2an
已知数列{an}满足a1=1,an=a1 +1/2a2 +1/3a3 … +1/(n-1)a(n-1),(n>1,n∈N
已知数列{an}满足a1=1;an=a1+2a2+3a3+...+(n-1)a(n-1)(n≥2);求通项公式
已知数列{an}满足a1=1,a1+a2+a3+.+a(n-1)-an=-1(n≥2且n属于N+).
已知数列{an}满足a1=1,an=logn(n+1)(n≥2,n∈N*).定义:使乘积a1?a2?a
已知数列An满足A1=1,An=3^(n-1)+A(n-1)(n=>2).(1)求A2,A3;(2)证明An(3^n-1
设数列{an}满足a1+3a2+3^2a3+.3^n-1×an=n/3,a∈N+.
已知数列an满足a1=1,an=a1+2a2+3a3+4a4+.(n-1)a(n-1),求通项an
已知数列{an}an≥0,a1=0,a(n+1)^2+a(n+1)-1=an^2,记Sn=a1+a2+...+an,Tn
已知数列{an}满足a1+a2+a3+...+an=n^2+2n.(1)求a1,a2,a3,a4