导数与不等式设g(lnx)=1/2(x+1/x) h(lnx)=1/2(x-1/x) f(x)=g(x)+h(x) 求证
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 07:15:08
导数与不等式
设g(lnx)=1/2(x+1/x) h(lnx)=1/2(x-1/x)
f(x)=g(x)+h(x) 求证:当x>0时 f(x)>1+x+x^2/2
设g(lnx)=1/2(x+1/x) h(lnx)=1/2(x-1/x)
f(x)=g(x)+h(x) 求证:当x>0时 f(x)>1+x+x^2/2
先令t=lnx
x=e^t
所以
g(t)=(1/2)(e^t+e^(-t))
h(t)=(1/2)(e^t-e^(-t))
f(t)=g(t)+h(t)=e^t
f(x)=e^x
令F(x)=e^x-1-x-x^2/2
F(0)=1-1-0-0=0
F'(x)=e^x-1-x
下需证F'(x)>0对x>0恒成立
因为F'(0)=1-1-0=0
下需证F''(x)=e^x-1>0对x>0恒成立
这个显然,因为e^x递增,x=0时函数值为1,x>0必有e^x>1
所以F''(x)在x>0上恒正,递增,所以F'(x)>0
所以F(x)>0在x>0上恒成立
所以f(x)>1+x+x^2/2在x>0上恒成立
x=e^t
所以
g(t)=(1/2)(e^t+e^(-t))
h(t)=(1/2)(e^t-e^(-t))
f(t)=g(t)+h(t)=e^t
f(x)=e^x
令F(x)=e^x-1-x-x^2/2
F(0)=1-1-0-0=0
F'(x)=e^x-1-x
下需证F'(x)>0对x>0恒成立
因为F'(0)=1-1-0=0
下需证F''(x)=e^x-1>0对x>0恒成立
这个显然,因为e^x递增,x=0时函数值为1,x>0必有e^x>1
所以F''(x)在x>0上恒正,递增,所以F'(x)>0
所以F(x)>0在x>0上恒成立
所以f(x)>1+x+x^2/2在x>0上恒成立
已知函数f(x)=1/2x^2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)=3x,其中a∈R且
已知函数f(x)=x-lnx,g(x)=lnx/x,求证f(x)>g(x)+1/2
函数f(x)=ax2+2x+1,g(x)=lnx.
(2014•宁波模拟)已知函数f(x)=x-x-1,g(x)=x+2x,h(x)=x+lnx,零点分别为x1,x2,x3
已知函数f(x)=lnx,g(x)=1/2ax²+2x,a≠0.(1)若函数h(x)=f(x)-g(x)存在单
已知函数f(x)=lnx,g(x)=1/2ax^2+2x.若h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围
已知函数f(x)=lnx+a/x,g(x)=x,F(x)=f(1+e的x次方)-g(x),x属于R
已知函数f(x)=lnx-x,h(x)=lnx/x.
求函数f(x)=-2/3x+1/3x+lnx的导数
设y=f(根号lnx),已知dy/dx=1/(2x^2*根号lnx),求f'(x),即f(x)的导数.
已知函数f(x)=lnx,g(x)=1/2x^2-2x,(1)设h(x)=f(x+1)-g'(x)(其中g'(x)是g(
已知函数f(x)=lnx, g(x)=1/2x2