作业帮 > 综合 > 作业

代数求证题a^4+b^4+c^4+d^4=4abcd,求证a=b=c=d

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/17 08:16:27
代数求证题
a^4+b^4+c^4+d^4=4abcd,求证a=b=c=d
代数求证题a^4+b^4+c^4+d^4=4abcd,求证a=b=c=d
应该加上a,b,c,d都大于0,否则不成立
如a=b=1,c=d=-1
也能得到a^4+b^4+c^4+d^4=4abcd
解法一
a^4+b^4+c^4+d^4=4abcd
a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4=4abcd-2a^2b^2-2c^2d^2
(a^2-b^2)^2+(c^2-d^2)^2=-2(ab-cd)^2
(a^2-b^2)^2+(c^2-d^2)^2+2(ab-cd)^2=0
平方相加等于0,所以每一个平方都等于0
(a^2-b^2)^2=(c^2-d^2)^2=(ab-cd)^2=0
a^2-b^2=c^2-d^2=ab-cd=0
a,b,c,d都大于0
a^2=b^2,所以a=b
c^2=d^2,所以c=d
ab-cd=0
ab=cd
把a=b和c=d代入
b^2=d^2,b=d
所以a=b=c=d
解法二
由均值不等式
a^4+b^4+c^4+d^4>=4(a^4*b^4*c^4*d^4)的四次方根=4abcd
当a=b=c=d时取等号
此处已知取等号
所以a=b=c=d