f(x1,x2,x3)=x1x2+2x1x3-x2x3 用配方法化为标准型,
将二次型f(x1,x2,x3)=2x1x2+2x1x3-6x2x3 化为标准型和规范型..
f(x1,x2,x3)=x1^2-2x2^2-2x3^2-4x1x2+4x1x3+8x2x3化为标准型.并写出所做的非退
f(x1,x2,x3)=2x1x2+2x1x3+2x2x3,求一正交变换x=py,将此二次型化为标准型.那是X
求一个正交变换,化二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3为标准型.
若二次型是ψ(X1,X2,X3)=X1^2-2X1X2+2X1X3-2X2X3+4X2^2,用初等变换法求其标准型以及线
用配方法把二次型2x3^2-2x1x2+2x1x3-2x2x3化为标准型,并写出所用坐标变换.疑问如下
f(x1,x2,x3)=x1^2-4x1x2+4x1x3-2x2^2+8x2x3-2x3^2 写出对应矩阵,用正交变换化
设f(x1,x2,x3)=x1²-4x1x2+8x1x3+4x2²+4x2x3+x3²,求
求一个正交变换,化下列型为 标准型:f(x1,x2,x3,X4)=2x1x2+2x1 x3-2x2x3+2x2x4+2x
化二次型f=x1^2+3x2^2+5x3^2+2x1x2-4x1x3为标准型,并求所用的变换矩阵
设f(X1,X2,X3)=X1^2+X2^2+X3^3+4X1X2+4X1X3+4X2X3 求1一正交变换化f为标准形
若奇函数f(x)=x 3+(b_1)+cx的三个零点x1,x2,x3满足x1x2+x2x3+x1x3=_2012,则b+