求解重积分,过程以及思路
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 10:08:02
求解重积分,过程以及思路
原式=1/2∫[-1,1]√(1-x^2)dx∫[-√(1-x^2),√(1-x^2)](x^2+z^2)dz
=1/2∫[-1,1]√(1-x^2)[2x^2√(1-x^2)+2/3√(1-x^2)^3]dx
=1/2∫[-1,1][2x^2(1-x^2)+2/3(1-x^2)^2]dx
=∫[-1,1][x^2-x^4+1/3+x^4/3-2/3x^2]dx
=2∫[0,1][x^2/3-2/3x^4+1/3]dx
=2/9-4/15+2/3
=28/45
再问: 1/2∫[-1,1]√(1-x^2)dx∫[-√(1-x^2),√(1-x^2)](x^2+z^2)dz=1/2∫[-1,1]√(1-x^2)[2x^2√(1-x^2)+2/3√(1-x^2)^3]dx是怎么搞出来的,谢谢
再答: x^2dz的原函数是:x^2z|[-√(1-x^2),√(1-x^2)]=2x^2√(1-x^2) z^2dz的原函数是:z^3/3|[-√(1-x^2),√(1-x^2)]=2/3√(1-x^2)^3
再问: 3q
=1/2∫[-1,1]√(1-x^2)[2x^2√(1-x^2)+2/3√(1-x^2)^3]dx
=1/2∫[-1,1][2x^2(1-x^2)+2/3(1-x^2)^2]dx
=∫[-1,1][x^2-x^4+1/3+x^4/3-2/3x^2]dx
=2∫[0,1][x^2/3-2/3x^4+1/3]dx
=2/9-4/15+2/3
=28/45
再问: 1/2∫[-1,1]√(1-x^2)dx∫[-√(1-x^2),√(1-x^2)](x^2+z^2)dz=1/2∫[-1,1]√(1-x^2)[2x^2√(1-x^2)+2/3√(1-x^2)^3]dx是怎么搞出来的,谢谢
再答: x^2dz的原函数是:x^2z|[-√(1-x^2),√(1-x^2)]=2x^2√(1-x^2) z^2dz的原函数是:z^3/3|[-√(1-x^2),√(1-x^2)]=2/3√(1-x^2)^3
再问: 3q