圆C :x2 y2-24x-28y-36=0内有一点P(4,2)过P作AP垂直BP直角三角形APB交圆于AB求动铉AB中
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/15 16:16:43
圆C :x2 y2-24x-28y-36=0内有一点P(4,2)过P作AP垂直BP直角三角形APB交圆于AB求动铉AB中点的轨迹方程
P(4,2)是圆C:x^2+y^2-24x-28y-36=0内的一点,圆上的动点A,B满足∠APB=90°
Q(x,y)
2x=xA+xB,2y=yA+yB
4x^2=(xA+xB)^2
4y^2=(yA^2+yB)^2
x^2+y^2-24x-28y-36=0
(xA)^2+(yA)^2-24xA-28yA-36=0
(xB)^2+(yB)^2-24xB-28yB-36=0
[(xA)^2+(yA)^2-24xA-28yA-36]+[(xB)^2+(yB)^2-24xB-28yB-36]=0
(xA)^2+(xB)^2+(yA)^2+(yB)^2-24*(xA+xB)-28*(yA+yB)-72=0
(xA+xB)^2-2xA*xB+(yA+yB)^2-2yA*yB-24*2x-28*2y-72=0
4x^2+4y^2-48x-56y-72=2(xA*xB+yA*yB)
PA⊥PB
[(yA-2)/(xA-4)]*[(yB-2)/(xB-4)]=-1
(xA-4)*(xB-4)+(yA-2)*(yB-2)=0
xA*xB+yA*yB=4(xA+xB)+2(yA+yB)-20
xA*xB+yA*yB=4*2x+2*2y-20
16x+8y-40=2(xA*xB+yA*yB)
4x^2+4y^2-48x-56y-72=16x+8y-40
x^2+y^2-16x-16y-8=0
AB中点Q的轨迹方程是园:(x-8)^2+(y-8)^2=136
Q(x,y)
2x=xA+xB,2y=yA+yB
4x^2=(xA+xB)^2
4y^2=(yA^2+yB)^2
x^2+y^2-24x-28y-36=0
(xA)^2+(yA)^2-24xA-28yA-36=0
(xB)^2+(yB)^2-24xB-28yB-36=0
[(xA)^2+(yA)^2-24xA-28yA-36]+[(xB)^2+(yB)^2-24xB-28yB-36]=0
(xA)^2+(xB)^2+(yA)^2+(yB)^2-24*(xA+xB)-28*(yA+yB)-72=0
(xA+xB)^2-2xA*xB+(yA+yB)^2-2yA*yB-24*2x-28*2y-72=0
4x^2+4y^2-48x-56y-72=2(xA*xB+yA*yB)
PA⊥PB
[(yA-2)/(xA-4)]*[(yB-2)/(xB-4)]=-1
(xA-4)*(xB-4)+(yA-2)*(yB-2)=0
xA*xB+yA*yB=4(xA+xB)+2(yA+yB)-20
xA*xB+yA*yB=4*2x+2*2y-20
16x+8y-40=2(xA*xB+yA*yB)
4x^2+4y^2-48x-56y-72=16x+8y-40
x^2+y^2-16x-16y-8=0
AB中点Q的轨迹方程是园:(x-8)^2+(y-8)^2=136
圆x^2+y^2=4内有一点P(0,1),过P作直角三角形APB,A,B在圆上,角APB=90度,求AB中点M的轨迹方程
设圆C:X2+y2-2x-4y-6=0,过点A(0,3)作直线L交圆C于P,Q两点,若OP垂直于OQ,O为原点,求直线L
已知点P(2,0)及圆C:x2+y2-6x+4y+4=0,设过点P的直线与圆C交于A、B两点,当|AB|=4,求以线段A
圆C(X-1)^2+Y^2=9内有一点P(0,2),过点P作直线L交圆C于A,B两点.
已知圆C:(x-1)+y=9内有一点P(2,2),过点P作直线L交圆C于A,B两点
如图,在锐角三角形ABC中,角APB=60°,以AB为直径的圆O1交AP,BP于C,D,过P,C,D三点做圆O2
(x-1)2+(y+1)2=9内有一点P(2,1),过点P作直线l交圆C于A、B
圆(x+1)2+y2=8内有一点P(-1,2),AB过点P,
已知圆C:(x-1)^2+y^2=9内有一点P(2,2)过点P作直线L交圆C于A,B两点.
已知圆C:(x-1)²+y²=9内有一点P(2,2),过点P作直线l交圆C于A、B两点
已知抛物线y=xx-1与x轴交于AB两点与y轴交于点C过点A作AP平行CB交抛物线于点P连接AC BC CP BP.
已知圆C:(x-1)2+y2=9内有一点P(2.2).过点P作直线l交圆C于A.B两点,求(1)当l经过圆心C时,直线l