如图,已知,在△ABC中,∠ABC=90°,BC为⊙O的直径,AC与⊙O交于点D,点E为AB的中点,PF⊥BC交BC于点
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/18 06:58:44
如图,已知,在△ABC中,∠ABC=90°,BC为⊙O的直径,AC与⊙O交于点D,点E为AB的中点,PF⊥BC交BC于点G,交AC于点F.
(1)求证:ED是⊙O的切线;
(2)如果CF=1,CP=2,sinA=
(1)求证:ED是⊙O的切线;
(2)如果CF=1,CP=2,sinA=
4 |
5 |
(1)证明:连接OD. (1分)
∵BC为直径,∴△BDC为直角三角形.
在Rt△ADB中,
E为AB中点,∴BE=DE,
∴∠EBD=∠EDB. (2分)
又∵OB=OD,∴∠OBD=∠ODB,
∵∠OBD+∠ABD=90°,∴∠ODB+∠EDB=90°.
∴ED是⊙O的切线. (5分)
(2)∵PF⊥BC,
∴∠FPC=90°-∠BCP(直角三角形的两个锐角互余).
∵∠PDC=90°-∠PDB(直径所对的圆周角是直角),∠PDB=∠BCP(同弧所对的圆周角相等),
∴∠FPC=∠PDC(等量代换).
又∵∠PCF是公共角,
∴△PCF∽△DCP. (7分)
∴
PC
CD=
CF
PC,
则PC2=CF•CD(相似三角形的对应边成比例).
∵CF=1,CP=2,
∴CD=4. (8分)
可知sin∠DBC=sinA=
4
5,
∴
DC
BC=
4
5,即
4
BC=
4
5,
∴直径BC=5. (10分)
∵BC为直径,∴△BDC为直角三角形.
在Rt△ADB中,
E为AB中点,∴BE=DE,
∴∠EBD=∠EDB. (2分)
又∵OB=OD,∴∠OBD=∠ODB,
∵∠OBD+∠ABD=90°,∴∠ODB+∠EDB=90°.
∴ED是⊙O的切线. (5分)
(2)∵PF⊥BC,
∴∠FPC=90°-∠BCP(直角三角形的两个锐角互余).
∵∠PDC=90°-∠PDB(直径所对的圆周角是直角),∠PDB=∠BCP(同弧所对的圆周角相等),
∴∠FPC=∠PDC(等量代换).
又∵∠PCF是公共角,
∴△PCF∽△DCP. (7分)
∴
PC
CD=
CF
PC,
则PC2=CF•CD(相似三角形的对应边成比例).
∵CF=1,CP=2,
∴CD=4. (8分)
可知sin∠DBC=sinA=
4
5,
∴
DC
BC=
4
5,即
4
BC=
4
5,
∴直径BC=5. (10分)
已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.
如图,已知:在△ABC中,AC=BC,以BC为直径的圆O交AB于点D,过点D作DE⊥AC,交AC于点E,交BC的延长线于
如图,已知在△ABC中,∠C=90°,AE平分∠BAC交BC于点E,点D在AB上,以AD为直径的⊙O经过点E,且交AC于
(2005•宿迁)已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的
已知:如图,在△ABC中,AB=AC.以AB为直径的⊙o交BC于点D,过点D做DE⊥AC于点E.延长DE交BA的延长线于
如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F
如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作FE⊥AB于点E,交AC的延长线于点F.
如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.
(2014•潮安区模拟)如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过点D作DE⊥BC于点E.
如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D的切线交BC于E,求证:DE=12BC.
已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.
如图,在△ABC中,AB=AC,以AB为直径的圆O交AC于点E,交BC于点D.求证 (1)点D是BC中点 (2)△BEC