解答题15.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 08:53:17
解题思路: (1)由E为AB中点,得到AB=2EB,又AB=2DC,等量代换得到DC=EB,又DC与EB平行,根据一对对边平行且相等的四边形为平行四边形可得DCBE为平行四边形,根据平行四边形的对边平行可得FB与DE平行,由两直线平行得两对内错角相等,从而根据两对对应角相等的两三角形相似可得三角形EDM与三角形FMB相似,根据相似得比例可得证; (2)由F为BC的中点,得到BC=2FB,又由(1)得到的四边形BCDE为平行四边形,可得对边BC=ED,等量代换可得DE=2FB,由(1)得到的三角形EDM与三角形FMB相似,可得相似比为2:1,即得到DM:MB=2:1,设出DM=2k与MB=k,根据BD的长列出关于k的方程,求出方程的解即可得到k的值,从而得到BM的长.
解题过程:
(1)证明:∵E是AB的中点,
∴AB=2EB,又AB=2CD,
∴DC=EB,又DC∥EB,
∴四边形DCBE为平行四边形,
∴FB∥DE,
∴∠BFM=∠DEM,∠FBM=∠EDM,
∴△EDM∽△FBM,
(2)解:由F为BC的中点,得到BC=2FB,
又四边形DCBE为平行四边形,得到DE=BC,
则DE=2FB,即FB:DE=1:2,
∴△FMB与△EMD的相似比为1:2,
即DM:MB=2:1,又BD=9,
设DM=2k,BM=k,
所以BD=BM+MD=k+2k=9,解得k=3,
则BM=3.
最终答案:略
解题过程:
(1)证明:∵E是AB的中点,
∴AB=2EB,又AB=2CD,
∴DC=EB,又DC∥EB,
∴四边形DCBE为平行四边形,
∴FB∥DE,
∴∠BFM=∠DEM,∠FBM=∠EDM,
∴△EDM∽△FBM,
(2)解:由F为BC的中点,得到BC=2FB,
又四边形DCBE为平行四边形,得到DE=BC,
则DE=2FB,即FB:DE=1:2,
∴△FMB与△EMD的相似比为1:2,
即DM:MB=2:1,又BD=9,
设DM=2k,BM=k,
所以BD=BM+MD=k+2k=9,解得k=3,
则BM=3.
最终答案:略