作业帮 > 数学 > 作业

椭圆a²x²+b²y²=c²(a,b,c>0),其中a=2b,则离心率

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 21:45:43
椭圆a²x²+b²y²=c²(a,b,c>0),其中a=2b,则离心率e=
椭圆a²x²+b²y²=c²(a,b,c>0),其中a=2b,则离心率
答案是√3/2
椭圆a²x²+b²y²=c²(a,b,c>0),其中a=2b,
所以,x²/(c²/a²)+y²/(c²/b²)=1,即x²/(c²/4b²)+y²/(c²/b²)=1 ,可以推出椭圆焦点在y轴上,
此时假设半焦距长为c′ 则知离心率e=c′ /(c/b),又由公式可知:(c′)²+(c/a)²=(c/b)²
则得出c′=√3c/2b 所以得出离心率e=(√3c/2b) /(c/b)=√3/2