若a.b.c都是正整数,且至少有一个不为1,a^xb^yc^z=a^yb^zc^x=a^zb^xc^y=1,讨论x,y,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 23:46:43
若a.b.c都是正整数,且至少有一个不为1,a^xb^yc^z=a^yb^zc^x=a^zb^xc^y=1,讨论x,y,z所满足的关系式
a^x * a^y * a^z)*(b^x * b^y * b^z)*(c^x * c^y * c^z)=(abc)^(x+y+z)=(a^x * b^y * c^z) * (a^y * b^z * c^x) * (a^z * b^x * c^y)=1*1*1=1
(abc)^(x+y+z)=1
x+y+z = 0
或abc=1 a=1/bc 代入a^x*b^y*c^z有b^(y-x)*c(z-x)=1
因a.b.c至少有一个不为1,所以y-x=0,z-x=0,即x=y=z
综上abc不=1时x+y+z = 0
abc=1时x=y=z
(abc)^(x+y+z)=1
x+y+z = 0
或abc=1 a=1/bc 代入a^x*b^y*c^z有b^(y-x)*c(z-x)=1
因a.b.c至少有一个不为1,所以y-x=0,z-x=0,即x=y=z
综上abc不=1时x+y+z = 0
abc=1时x=y=z
若abc均为正数,且xyz不等于1,a'xb'yc'z=a'yb'zc'x=a'zb'xc'y=1.求x.y.z之间的关
《空间直线》有已知的两点A(Xa,Ya,Za) ,B(Xb,Yb,Zb) 另外一点C (Xc,Yc)已知,求C点在Z轴的
英语翻译有一行电文,按下列规律译为密码A--Za--zB--Yb--yC--Xc--x即第i个字母变为(26-i+1)个
求证:向量a,b,c共面的充要条件是:存在不全为零的实数x,y,z,使xa+yb+zc=0
已知空间向量a.b.c.p若存在实数组(x.y.z)和(x2.y2.z2)满足p=xa+yb+zc p=x2a+y2b+
用反证法若a,b,c属于R且x=a^2-2b+1,y=b^2-2c+1,z=c^2-2a+1.则x,y,z中至少有一个不
a,b,c是空间内的三个向量,存在有序实数对x,y,z使得xa+yb+zc=0,那么,
如果三个向量a b c不共面,那么对空间任一向量p,表达式p=xa+yb+zc(x,y,z∈R)唯一
已知单项式3a^3x+y-zb^3c^x+y+z与-6a^4b^2x-yc^6是同类项
用反正法证明,若a.b.c属于R,且x=a方-2b+1,y=b方-2c+1,z=c方-2a+1,则x.y.z中至少有一个
空间中求点到线的距离已知任意点A(Xa,Ya,Za),任意点B(Xb,Yb,Zb),和任意点C(X,Y,Z).求点C到向
.已知向量a=(3,4),向量b=(4,3),求x,y的值,使(xa-yb)⊥a,且|xa-xb|=1(ab都是向量)