证明;cosa/(seca/2+csca/2)=1/2sina(cosa/2-sina/2)
证明[(tanA)^2-(cotA)^2]/[(sinA)^2-(cosA)^2]=(secA)^2+(cscA)^2
证明三角比的恒等式(tana^2-cota^2)/sina^2-cosa^2=seca^2+csca^2
tana-cota/seca-csca=sina+cosa证明 3Q
证明:2(cosa-cosa)/(1+cosa+cosa)=cosa/(1+sina)-sina/(1+cosa).
求证sina(1+tana)+cosa(1+cota)=csca+seca
(sinA-cscA)*(cosA-secA)=1/(tanA+cotA)
求证:1+sina+cosa/1+sina-cosa+1-cosa+sina/1+cosa+sina=2/sina
证明(1-cos^2a)/(sina+cosa)-(sina+cosa)/(tan^2a-1)=sina+cosa
证明(1-cos^2a)/(sina-cosa)-(sina+cosa)/(tan^2-1)=sina+cosa
证明 cosa/(1+sina0-sina/(1+cosa)=2(cosa-sina)/(1+sina+cos)
证明1+sina+cosa+2sinacosa/1+sina+cosa=sina+cosa,
同角三角函数 习题证明2(cosa-sina )/1+cosa+sina=cosa/1+sina-sina/1+cosa