sin(kπ+α)化简
化简[sin(kπ-α)*cos(kπ+α)]/{sin[(k+1)π+α]*cos[(k+1)π-α]}
化简 sin(4k-1/4π- α)+cos(4k+1/4π -α)(k∈Z)
化简sin(4k-1/4π- α)+cos(4k+1/4π -α)(k∈Z)
设k∈Z,化简sin(kπ−α)cos[(k−1)π−α]sin[(k+1)π+α]cos(kπ+α)的结果是( )
sin(kπ-α)*cos〔(k-1)π-α〕/sin〔(k+1)π+α〕*cos(kπ+α) ,k属于Z
设K为整数,化简sin(k∏-α)cos((k-1)∏-α)/sin((k+1)∏+α)cos(k∏+α)
设k为整数,化简sin(kπ-a)cos[(k-1)π-a]/sin[(k+1)π+a]cos(kπ+a)
化简:cos[(k+1)π-a]·sin(kπ-a)/cos[(kπ+a)·sin[(k+1)π+a] (k属于整数)
已知α、β≠kπ+π2(k∈Z),且sinθ+cosθ=2sinα , sinθcosθ=sin
当2kπ-π/4≤α≤2kπ+π/4(k∈Z),化简√(1-2sinα×cosα)+√(1+2sinα×cosα)
化简sin(kπ + 2/3π )× cos(kπ -π/6 )
化简sin(4k-1/4)π-a+cos(4k+1/4)π-a