雅可比矩阵有什么特点
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 21:07:38
雅可比矩阵有什么特点
Jacobi 方法
Jacobi方法是求对称矩阵的全部特征值以及相应的特征向量的一种方法,它是基于以下两个结论
1) 任何实对称矩阵A可以通过正交相似变换成对角型,即存在正交矩阵Q,使得
QT AQ = diag(λ1 ,λ2 ,…,λn ) (3.1)
其中λi(i=1,2,…,n)是A的特征值,Q中各列为相应的特征向量.
2) 在正交相似变换下,矩阵元素的平方和不变.即设A=(aij)n×n ,Q交矩阵,记B=QT AQ=(bij)n×n ,则
Jacobi方法的基本思想是通过一次正交变换,将A中的一对非零的非对角化成零并且使得非对角元素的平方和减小.反复进行上述过程,使变换后的矩阵的非对角元素的平方和趋于零,从而使该矩阵近似为对角矩阵,得到全部特征值和特征向量.
1 矩阵的旋转变换
设A为n阶实对称矩阵,考虑矩阵
Jacobi方法是求对称矩阵的全部特征值以及相应的特征向量的一种方法,它是基于以下两个结论
1) 任何实对称矩阵A可以通过正交相似变换成对角型,即存在正交矩阵Q,使得
QT AQ = diag(λ1 ,λ2 ,…,λn ) (3.1)
其中λi(i=1,2,…,n)是A的特征值,Q中各列为相应的特征向量.
2) 在正交相似变换下,矩阵元素的平方和不变.即设A=(aij)n×n ,Q交矩阵,记B=QT AQ=(bij)n×n ,则
Jacobi方法的基本思想是通过一次正交变换,将A中的一对非零的非对角化成零并且使得非对角元素的平方和减小.反复进行上述过程,使变换后的矩阵的非对角元素的平方和趋于零,从而使该矩阵近似为对角矩阵,得到全部特征值和特征向量.
1 矩阵的旋转变换
设A为n阶实对称矩阵,考虑矩阵
函数矩阵与行列式(雅可比(Jacobi)矩阵与行列式)
单元刚度矩阵有什么特点
关于雅可比矩阵的问题如果雅可比行列式恒等于零,则函数组(u1,u2,…,un)是函数相关的,其中至少有一个函数是其余函数
正交矩阵的特征根有什么特点
平行语料库和可比较语料库有什么区别
雅可比矩阵与行列式的性质及其应用 麻烦翻译一下
雅可比矩阵乘法用到了一个矩阵乘法的一个定理是m×n的矩阵和n×m的矩阵相乘得到的矩阵的行列是用这两个矩阵从n选m的组合在
松树可比作什么人
白雪纷纷可比作什么
克拉默法则 当系数矩阵A=0时方程有什么特点?
矩阵有什么实际意义?
AV矩阵,VGA矩阵,RGB矩阵,DVI矩阵,HDMI矩阵,分别有什么不同?