请问lim[f(x-h)-f(x)]/-h 是等于f'(x)还是-f'(x)
设f(x)具有二阶导数f''(x),证明f''(x)=lim(f(x+h)-2f(x)+f(x-h))/h^2
若f(x)有二阶导数,证明f''(x)=lim(h→0)f(x+h)-2f(x)+f(x-h)/h^2.
设f(x)在x=2处可导,且f'(2)=1,则lim h→0 [ f(2+h)-f(2-h)]/h等于多少,
若函数f(x)在点x=a处可导,则lim(h→0)[(f(x)-f(x+3h))/h等于(),求过程
f(x)可导,求当h趋近0负时,lim【f(x)-f(x-h)】/h的值
f(x)在x=a处可导, lim(h→0) [f(a+h)-f(a-2h)]/h=
f(x)在x处二阶可导,求lim{[f(x+h)-2f(x)+f(x-h)]/h^2},h趋向于0
设函数f(x)在x=1处可导,且f'(1)=2,则[lim(h→0)f(1-h)-f(1)]/h等于
设f(x)在点x=a处可导那么lim h趋近于0时 f(a+h)-f(a-h)/h 等于多少
f^2(x)是等于f(x)*f(x)还是f(f(x))
正弦函数用定义求导就是用定义来求 F(x)=Sin(x)F'(x)=Lim h->0 ( (F(x+h)-F(x))/h
设函数f(x)在x=x0处可导,则lim(h>0)[f(x0)-f(x0-2h)]/h