一道高一应用题,可能与平面向量有关,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 15:05:16
一道高一应用题,可能与平面向量有关,
在很大的一湖岸边(视湖岸为直线)停着一只船,由于缆绳突然断开,船被风刮跑,其方向与河岸成15°角,速度v=2.5km/h,同时岸上有一人,从同一地点出发追赶船,已知他在岸上跑的速度v1=4km/h,在水中游的速度v2=2km/h,问此人能否追上船,船能人被追上的最大速度是多少?
在很大的一湖岸边(视湖岸为直线)停着一只船,由于缆绳突然断开,船被风刮跑,其方向与河岸成15°角,速度v=2.5km/h,同时岸上有一人,从同一地点出发追赶船,已知他在岸上跑的速度v1=4km/h,在水中游的速度v2=2km/h,问此人能否追上船,船能人被追上的最大速度是多少?
将小船的速度分解为沿河岸的速度Va
cos15=Va/2.5,
小船最大速度为xkm/h,
画图,运用三角形相似,得比例式,2.5/X=Va/2
得x=2.07km/h,
即小船能被此人追上的最大速度是2.07km/h.
cos15=Va/2.5,
小船最大速度为xkm/h,
画图,运用三角形相似,得比例式,2.5/X=Va/2
得x=2.07km/h,
即小船能被此人追上的最大速度是2.07km/h.