抛物线y=ax2+bx+c(a≠0)的顶点为C(l,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 19:43:56
抛物线y=ax2+bx+c(a≠0)的顶点为C(l,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).
如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.
如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.
在线数学帮助你!又遇到好题了!爱不释手哈!
过程:
对称轴:X=1;根据B(3.0)A(-1;0)容易解出:
a=-1;b=2;c=3;
y=-X^2+2X+3;
先设一下T(X;-X^2+2X+3);D(0;3);
则M(X;0);N (n;3n+3)
根据三角形相似原理;边的比值:
MN:MD=MD:BD;
因此:MD^2=MNXBD;
根据:MN∥BD;则有三角形AMN∽ABD;
AM:AB=MN:BD;
另外再加一个条件:△BOD是是等腰直角三角形;角OBD为45°;
好,现在进行数据代入:
可得:(X^2+9)^2=9[(n-X)^2+(3n+3)^2];
[3√2(X+1)]^2=16[(n-X)^2+(3n+3)^2];
对两个式子进行处理:
8(X^2+9)^2=81(X+1)^2;
解得:2√2X^2-9X+9(2√2-1)=0;
进行判别式检验:△=b^2-4ac=81-72√2(2√2-1)=81+72√2-288=-105,17
过程:
对称轴:X=1;根据B(3.0)A(-1;0)容易解出:
a=-1;b=2;c=3;
y=-X^2+2X+3;
先设一下T(X;-X^2+2X+3);D(0;3);
则M(X;0);N (n;3n+3)
根据三角形相似原理;边的比值:
MN:MD=MD:BD;
因此:MD^2=MNXBD;
根据:MN∥BD;则有三角形AMN∽ABD;
AM:AB=MN:BD;
另外再加一个条件:△BOD是是等腰直角三角形;角OBD为45°;
好,现在进行数据代入:
可得:(X^2+9)^2=9[(n-X)^2+(3n+3)^2];
[3√2(X+1)]^2=16[(n-X)^2+(3n+3)^2];
对两个式子进行处理:
8(X^2+9)^2=81(X+1)^2;
解得:2√2X^2-9X+9(2√2-1)=0;
进行判别式检验:△=b^2-4ac=81-72√2(2√2-1)=81+72√2-288=-105,17
如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A,B两点,交y轴于点D,其中点B的坐标3.0
已知抛物线y=ax2+bx+c的顶点为P(-4,-),与x轴交于A、B两点,与y轴交于点C,其中B点坐标为(1,0).
如图,抛物线y=ax2+bx+c与x轴交于A,D两点,与y轴交于点C,抛物线的顶点B在第一象限,若点A的坐标为(1,0)
如图1 抛物线y=ax2+bx+c的顶点为(1,4)交x轴于AB两点 交y轴于点D 其中B点的坐标为(3,0) 1.求抛
如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
已知抛物线y=ax2+bx+c的顶点为P(-4,-25/2),与x轴交于A、B两点,与y轴交于点C,其中B点坐标为(1,
如图,抛物线y=ax2+bx+c的顶点坐标P为(1,-4√3/3),交x轴于A.B两点,交y轴于点C(0,-√3)
如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C
如图所示,抛物线y=ax2+bx+c(a≠0)的顶点坐标为点A(-2,3),且抛物线y=ax2+bx+c与y轴交于点B(
(2013•苍梧县二模)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A,B两点,交y轴于点
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两
已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),