求t的范围,使f(x1,x2,x3,x4)=tx1^2+tx2^2+tx3^2+2x1x2+2x1x3-2x2x3负定
求一个正交变换,化二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3为标准型.
f(x1,x2,x3)=x1^2-2x2^2-2x3^2-4x1x2+4x1x3+8x2x3化为标准型.并写出所做的非退
将二次型f(x1,x2,x3)=2x1x2+2x1x3-6x2x3 化为标准型和规范型..
f(x1,x2,x3)=x1^2-4x1x2+4x1x3-2x2^2+8x2x3-2x3^2 写出对应矩阵,用正交变换化
f(x1,x2,x3)=2x1x2+2x1x3+2x2x3,求一正交变换x=py,将此二次型化为标准型.那是X
设方程3x的三次方-2x的平方+3x-1=0的根为x1,x2,x3,求x1x2+x2x3+x1x3的值
设f(X1,X2,X3)=X1^2+X2^2+X3^3+4X1X2+4X1X3+4X2X3 求1一正交变换化f为标准形
求一个正交变换,化下列型为 标准型:f(x1,x2,x3,X4)=2x1x2+2x1 x3-2x2x3+2x2x4+2x
若二次型是ψ(X1,X2,X3)=X1^2-2X1X2+2X1X3-2X2X3+4X2^2,用初等变换法求其标准型以及线
化二次型f=x1^2+3x2^2+5x3^2+2x1x2-4x1x3为标准型,并求所用的变换矩阵
设f(x1,x2,x3)=x1²-4x1x2+8x1x3+4x2²+4x2x3+x3²,求
观察下列各式:1X2=1/3(1x2x3-0x1x2) 2x3=1/3(2x3x4-1x2x3) 3x4=1/3(3x4