方程-m^4+4m^2+2^n·m^2+2^n+5=0 的正整数解有----组
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 15:06:14
方程-m^4+4m^2+2^n·m^2+2^n+5=0 的正整数解有----组
A.1组 B.2组 C.3组 D.4组 正确答案是A项,
因式分解得到了(-m^2+2^n+5)(m^2+1)=0 推出 2^n+5=m^2
A.1组 B.2组 C.3组 D.4组 正确答案是A项,
因式分解得到了(-m^2+2^n+5)(m^2+1)=0 推出 2^n+5=m^2
-m^4+4m^2+2^n·m^2+2^n+5=0
(-m^2+2^n+5)(m^2+1)=0
m^2+1恒>0,因此只有-m^2+2^n+5=0
m^2=2^n+5
等式右边为奇数,则m应为奇数.令m=2k-1
(2k-1)^2=2^n+5
4k^2-4k=2^n+4
k^2-k-1=2^(n-2)
k^2与k同为奇数或偶数,k^2-k为偶数,k^2-k-1为奇数,要等式成立,只有2^(n-2)为奇数,只有当n=2时,2^(2-2)=2^0=1,为奇数,n取其余正整数时,2^n均为偶数.此时m^2=2^2+5=9 m=3
满足题意的正整数解仅有一组,m=3 n=2
选A
(-m^2+2^n+5)(m^2+1)=0
m^2+1恒>0,因此只有-m^2+2^n+5=0
m^2=2^n+5
等式右边为奇数,则m应为奇数.令m=2k-1
(2k-1)^2=2^n+5
4k^2-4k=2^n+4
k^2-k-1=2^(n-2)
k^2与k同为奇数或偶数,k^2-k为偶数,k^2-k-1为奇数,要等式成立,只有2^(n-2)为奇数,只有当n=2时,2^(2-2)=2^0=1,为奇数,n取其余正整数时,2^n均为偶数.此时m^2=2^2+5=9 m=3
满足题意的正整数解仅有一组,m=3 n=2
选A
若方程x^2-mnx+m+n=0,有整数根,且m、n为正整数,求m、n
已知m和n是正整数,且m-n+mn=4,求2m+3n的值
m,n,(2m-1)/n,(2n-1)/m为正整数,m,n>=2.求m,n
数学求表达式定义在正整数集上的函数f(x)对任意m.n属于正整数,都有f(m+n)=f(m)+f(n)+4(m+n)-2
定义在正整数集的函数F(X)对任意m,n 都有F(m+n)=F(m)+F(n)+4(m+n)-·2,且F(1)=1
计算4(m+n)^2·(-m-n)^3-(m+n)(-m-n)^4+5(m+n)^5
若m,n是正整数,是说明(m+n)^2-(m-n)^的值一定是4的倍数!
已知m,n都是正整数,则多项式-2x^n+3x^m+4x^m+n的次数是
定义在正整数集上的函数f(x)对任意m,n∈N*,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且f(1)=1
定义在正整数上的函数f(x)对任意m,n∈N*,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且f(1)=1.
若方程x^2-mnx+m+n=0有整数根,且m,n为正整数,则mn的值为多少?
m^+4m+n^-2n+5=0,求4m+5n=?