数列an满足a1=1/3,Sn=n(2n-1)an,求an
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 08:42:04
数列an满足a1=1/3,Sn=n(2n-1)an,求an
Sn=n(2n-1)an,S(n+1)=(n+1)[2(n+1)-1]a(n+1)
=(n+1)[2n+1]a(n+1)
S(n+1)-Sn=a(n+1)
即(n+1)[2n+1]a(n+1)-n(2n-1)an=a(n+1)
n(2n-1)an=(2n^2+3n)a(n+1)
(2n-1)an=(2n+3)a(n+1)
a(n+1)=(2n-1)/(2n+3)an a2=1/5*1/3=1/15
=(2n-1)/(2n+3)*(2n-3)/(2n+1)a(n-1)
=(2n-1)/(2n+3)*(2n-3)/(2n+1)*(2n-5)/(2n-1)a(n-2)
.
=(2n-1)/(2n+3)*(2n-3)/(2n+1)*(2n-5)/(2n-1)*...*1/5a1
=(2n-1)/(2n+3)*(2n-3)/(2n+1)*(2n-5)/(2n-1)*...*1/5*1/3
=1/[(2n+3)(2n+1)]
an=1/[(2n+1)(2n-1)]
=(n+1)[2n+1]a(n+1)
S(n+1)-Sn=a(n+1)
即(n+1)[2n+1]a(n+1)-n(2n-1)an=a(n+1)
n(2n-1)an=(2n^2+3n)a(n+1)
(2n-1)an=(2n+3)a(n+1)
a(n+1)=(2n-1)/(2n+3)an a2=1/5*1/3=1/15
=(2n-1)/(2n+3)*(2n-3)/(2n+1)a(n-1)
=(2n-1)/(2n+3)*(2n-3)/(2n+1)*(2n-5)/(2n-1)a(n-2)
.
=(2n-1)/(2n+3)*(2n-3)/(2n+1)*(2n-5)/(2n-1)*...*1/5a1
=(2n-1)/(2n+3)*(2n-3)/(2n+1)*(2n-5)/(2n-1)*...*1/5*1/3
=1/[(2n+3)(2n+1)]
an=1/[(2n+1)(2n-1)]
已知数列an满足a1=1/2 sn=n平方×an 求an
已知数列{an},满足a1=1/2,Sn=n²×an,求an
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an
已知数列{an}满足an+1+an=4n-3 当a1=2时,求Sn
数列{an}满足a1=1,且an=an-1+3n-2,求an
已知数列{an}满足a1=1/2,sn=n^2an,求通项an
数列an满足sn=3an-1/2 计算a1,a2,a3,a4 猜an通项 求an前n项和sn
已知数列an满足a1=1,a(n+1)=an/{3(an)+1} Sn=a1a2+a2a3+.+an(an+1),求Sn
已知数列{an}满足a1=1,a(n+1)=3an+2,求数列{an}的前n项和Sn.
已知数列{an}满足an+1=2an+3.5^n,a1=6.求an
已知数列An的前n项和Sn满足An+2Sn*Sn-1=0,n大于等于2,A1=1/2,求An.
数列{an}满足a1=1,an=3n+2an-1(n≥2)求an