ρ^2=a^2*cos2θ 怎样求导?怎样化为参数或直角坐标方程?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 05:29:26
ρ^2=a^2*cos2θ 怎样求导?怎样化为参数或直角坐标方程?
设 x = ρ*cosθ,y = ρ*cosθ
则原方程 ρ^4 =a^2 * ρ^2 *cos2θ
可以化为直角坐标方程:
(x²+y²)² = a²(x² - y²)
或者参方程:
x = a *√cos2θ * cosθ ,y = a *√cos2θ * sinθ
x ‘(θ) = a * [ - 2sin2θ *cosθ / (2*√cos2θ) + √cos2θ * (-sinθ)] = a * (-sin3θ) / √cos2θ
y ‘(θ) = a * [ - 2sin2θ *sinθ / (2*√cos2θ) + √cos2θ * (cosθ)] = a * (cos3θ) / √cos2θ
dy/dx = y ‘(θ) / x ‘(θ) = cos3θ / (- sin3θ) = - cot(3θ)
再问: 如果要求另外一个双纽线:ρ^2=2a^2*cos2θ, θ=派/12时的导数值怎么求?答案是-1,可是我怎么倒腾也倒腾不出来。。。。。。。谢谢大神了。。。
再答: 与前面类似:dy/dx = y ‘(θ) / x ‘(θ) = cos3θ / (- sin3θ) = - cot(3θ) 当 θ = π/12 时, dy/dx= - cot( π/4) = -1
再问: cos3θ、sin3θ是怎么换出来的?
再答: x ‘(θ) = a * [ - 2sin2θ *cosθ / (2*√cos2θ) + √cos2θ * (-sinθ)] = a * [ - sin2θ *cosθ - cos2θ * (-sinθ) ] / √cos2θ = a * (-sin3θ) / √cos2θ y ‘(θ) = a * [ - 2sin2θ *sinθ / (2*√cos2θ) + √cos2θ * (cosθ)] = a * [ - sin2θ *sinθ - cos2θ * cosθ ] / √cos2θ = a * (cos3θ) / √cos2θ
则原方程 ρ^4 =a^2 * ρ^2 *cos2θ
可以化为直角坐标方程:
(x²+y²)² = a²(x² - y²)
或者参方程:
x = a *√cos2θ * cosθ ,y = a *√cos2θ * sinθ
x ‘(θ) = a * [ - 2sin2θ *cosθ / (2*√cos2θ) + √cos2θ * (-sinθ)] = a * (-sin3θ) / √cos2θ
y ‘(θ) = a * [ - 2sin2θ *sinθ / (2*√cos2θ) + √cos2θ * (cosθ)] = a * (cos3θ) / √cos2θ
dy/dx = y ‘(θ) / x ‘(θ) = cos3θ / (- sin3θ) = - cot(3θ)
再问: 如果要求另外一个双纽线:ρ^2=2a^2*cos2θ, θ=派/12时的导数值怎么求?答案是-1,可是我怎么倒腾也倒腾不出来。。。。。。。谢谢大神了。。。
再答: 与前面类似:dy/dx = y ‘(θ) / x ‘(θ) = cos3θ / (- sin3θ) = - cot(3θ) 当 θ = π/12 时, dy/dx= - cot( π/4) = -1
再问: cos3θ、sin3θ是怎么换出来的?
再答: x ‘(θ) = a * [ - 2sin2θ *cosθ / (2*√cos2θ) + √cos2θ * (-sinθ)] = a * [ - sin2θ *cosθ - cos2θ * (-sinθ) ] / √cos2θ = a * (-sin3θ) / √cos2θ y ‘(θ) = a * [ - 2sin2θ *sinθ / (2*√cos2θ) + √cos2θ * (cosθ)] = a * [ - sin2θ *sinθ - cos2θ * cosθ ] / √cos2θ = a * (cos3θ) / √cos2θ