1、设f(x)定义于R上满足条件|f(x1)-f(x2)|
f(x+2)定义于R上奇函数 (x1-x2)/(f(x1)-f(x2))小于零
要详解设函数f(x)的定义域为R,且满足下列两个条件:(1).存在x1不等于x2,使f(x1)不等于f(x2)(2).对
设函数f(x)的定义域为R*,且满足条件f(4)=1,对于任意x1,x2∈R*,有f(x1*x2)=f(x1)+f(x2
定义在R上的偶函数f(x)满足:对任意的x1,x2属于(-∞,0],X1≠X2,有(x2-x1)(f(x1)-f(x2)
设f(x)是定义在R上单调递减的奇函数,若X1+X2>0,X2+X3>0,X3+X1>0,则f(X1)+f(X2)+f(
定义在R上的偶函数f(x)满足:对于任意的x1,x2∈(-∞,0](x1不等于x2),有(x2-x1)-(f(x2)-f
f(x)是定义于R上的函数,满足两个条件f(x+y)=f(x)f(1-y)+f(1-x)f(y).)
f(x)是定义于R上的函数,满足两个条件f(x+y)=f(x)f(1-y)+f(1-x)f(y)...
若定义在R上的函数f(X)满足:对任意X1,X2都有f(X1+X2)=f(X1)+f(X2)+1,则f(X)+1为偶函数
1、定义在R上的函数f(x)(f(x)≠0)满足对任意实数x1、x2都有f(x1+x2)=f(x1)f(x2)
(1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且
已知函数f(x)在R上有定义,满足f(0)=1,且对于任意的x1,x2恒有f(x1-x2)=f(x1)-x2(2x-x1