如图,AB是⊙O的直径,CD切⊙O于E,AC⊥CD于C,BD⊥CD于D,交⊙O于F,连接AE、EF.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 10:43:35
如图,AB是⊙O的直径,CD切⊙O于E,AC⊥CD于C,BD⊥CD于D,交⊙O于F,连接AE、EF.
(1)求证:AE是∠BAC的平分线;
(2)若∠ABD=60°,则AB与EF是否平行?请说明理由.
(1)求证:AE是∠BAC的平分线;
(2)若∠ABD=60°,则AB与EF是否平行?请说明理由.
(1)证明:连接BE;
∵AB是⊙O的直径,
∴∠AEB=90°.
∵CD切圆于E,
∴∠AEC=∠ABE,又AC⊥CD.
∴∠CAE=∠BAE.
即AE是∠BAC的平分线.
(2)AB∥EF.理由如下:
∵AC⊥CD于C,BD⊥CD于D,
∴AC∥BD.
∴∠BAC=180°-∠B=120°.
∵AE是∠BAC的平分线,
∴∠BAE=60°.
∴∠DFE=∠BAE=60°(圆内接四边形的任意一个外角等于它的内对角),
∴∠DFE=∠ABF.
∴AB∥EF.
∵AB是⊙O的直径,
∴∠AEB=90°.
∵CD切圆于E,
∴∠AEC=∠ABE,又AC⊥CD.
∴∠CAE=∠BAE.
即AE是∠BAC的平分线.
(2)AB∥EF.理由如下:
∵AC⊥CD于C,BD⊥CD于D,
∴AC∥BD.
∴∠BAC=180°-∠B=120°.
∵AE是∠BAC的平分线,
∴∠BAE=60°.
∴∠DFE=∠BAE=60°(圆内接四边形的任意一个外角等于它的内对角),
∴∠DFE=∠ABF.
∴AB∥EF.
如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB于点F,弦AE⊥CD于点H,连接CE、O
如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.
如图,△ABC内接于⊙O,CD⊥AB于P,交⊙O于D,E为AC的中点,EP交BD于F,⊙O的直径为d.下列结论:&nbs
如图AB是⊙O的直径弦CD⊥AB于P 如果弦AE交CD于F,求证AC²=AF×AE
如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD.
如图,AB为圆O的直径,CD⊥AB于点E,交圆O于C、D两点,OF⊥AC于点F
如图,已知AB是⊙O的直径,CD⊥AB,垂足为D,AE⊥AB,且AE=AC,BE交圆O于点F 求证:EF·EB=AD·A
如图,AB是圆O的直径,CD⊥AB于D,且AD=2BD,E为AD的中点,连接CE并延长交圆O于F.若CD=2,则AB=
在⊙O中,AB是直径,CD是弦,CE⊥CD于点C,交AB于点E,DF⊥CD于点D,交AB于点F求证:AE=BF
如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD.
如图,△ABC中,AC=6,BC=4,以AB为直径的⊙O经过点C,CD平分∠ACB交⊙O于点D,AE⊥CD于点E,则OE
如图,AB是圆O的直径,CD⊥AB于点E,交圆O于点D,OF⊥AC于点F.