作业帮 > 数学 > 作业

如图,AB是⊙O的直径,CD切⊙O于E,AC⊥CD于C,BD⊥CD于D,交⊙O于F,连接AE、EF.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 10:43:35
如图,AB是⊙O的直径,CD切⊙O于E,AC⊥CD于C,BD⊥CD于D,交⊙O于F,连接AE、EF.

(1)求证:AE是∠BAC的平分线;
(2)若∠ABD=60°,则AB与EF是否平行?请说明理由.
如图,AB是⊙O的直径,CD切⊙O于E,AC⊥CD于C,BD⊥CD于D,交⊙O于F,连接AE、EF.
(1)证明:连接BE;
∵AB是⊙O的直径,
∴∠AEB=90°.
∵CD切圆于E,
∴∠AEC=∠ABE,又AC⊥CD.
∴∠CAE=∠BAE.
即AE是∠BAC的平分线.
(2)AB∥EF.理由如下:
∵AC⊥CD于C,BD⊥CD于D,
∴AC∥BD.
∴∠BAC=180°-∠B=120°.
∵AE是∠BAC的平分线,
∴∠BAE=60°.
∴∠DFE=∠BAE=60°(圆内接四边形的任意一个外角等于它的内对角),
∴∠DFE=∠ABF.
∴AB∥EF.